Unilateral calcaneal valgus: what can it mean?

right calcaneal valgus

right calcaneal valgus

Take a good look at this picture and what do you see? Do you see the calcaneal valgus on the right side. What runs through your mind?

Possibilities for causing this condition, as well as the clinical implications are numerous.

The short list should include:

  • A shorter leg on the contralateral side: often times we will pronate more on the longer leg side to compensate for a short leg on the opposite

  • Increased rear foot and/or fore foot pronation on the valgus side. Laxity of the spring ligament or incompetency of the musculature which helps to maintain your arch (tibialis posterior, foot intrinsics, tibialis anterior to name a few) often causes more collapse on the effected side

  • A lack of available rearfoot eversion on the contralateral side. It may be that the increase calcaneovalgus is normal and the opposite side is more rigid.

  • If you were seeing this in the middle of the gait cycle it could be that that is their strategy to get around a loss of hip extension or ankle rocker

  • External tibial torsion on that side. Go ahead, stand up and spin your right foot into external rotation and keep your left foot with a normal progression angle. Can you see how your arch collapses to a greater degree on the side with the external torsion? Remember that pronation is dorsiflexion, eversion and abduction.

  • Internal tibial torsion on the contralateral side. Internal tibial torsion puts the foot into supination which makes it into more of a rigid lever rather than mobile adapter.

    And the list goes on…

    Next time you see a unilateral deformity like this, hopefully some of these things run through your mind and will help you to pinpoint where the problem actually is.

    Dr Ivo Waerlop, one of The Gait Guys

    #calcanealeversion #rearfootvalgus
    #lowerextremitydeformities

Foot Types? Do they really matter?

IMG_6218 copy.jpg

The answer is " yes, often times".

Did you miss our 3rd Wednesdays presentation last week on foot types and obligate biomechanics (and pathomechanic) that ensue? Here is the video feed that you can watch and get ce credits for:

https://www.chirocredit.com/course/Chiropractic_Doctor/Biomechanics_214

#foottypes #biomechanics #thegaitguys

Determining foot types...In a nutshell

Screen Shot 2019-10-15 at 8.31.27 PM.png

We talked yesterday about how foot types (i.e., the forefoot to rear foot relationship) can often produce predictable pathomechanics. Here's How to do it. Pretty basic, eh? Its the characteristics, along with the other anatomical goodies they may have that helps to clinch the diagnosis and dictate treatment.

To find out about how to apply your newfound knowledge, join us tomorrow night on our 3rd Wednesdays tele seminar: Biomechanics 314 on online.com

5 PST, 6MST, 7CST, 8EST

Foot types: do they really matter?

forefoot varus: note how the forefoot is inverted with respect to the rear foot

forefoot varus: note how the forefoot is inverted with respect to the rear foot

Foot type. You know what we are talking about. The relation in anatomically and in space of the rear foot to the forefoot. We believe that this anatomical relationship holds key clinical insights to predictable biomechanics in that particular foot type.

Simply put, the rear foot can be either inverted, everted or neutral; Same with the forefoot. If the rear foot is inverted we call that a rearfoot varus. If the foot is inverted we call that a forefoot varus. If the rear foot is everted we call that a rear foot valgus and if the forefoot is inverted we call that a forefoot valgus.

Now think about the simple motions of pronation and supination. Pronation is dorsiflexion, eversion and abduction; supination is plantar flexion, inversion and adduction. If it remains in eversion, we say that it is in vslgus and that means they will be qualities of pronation occurring in that foot while it is on the ground. If the foot is inverted, it will have qualities of supination.

We think of pronation as making the foot into a mobile adapter and supination is making the foot into a rigid lever.

During a typical gait cycle the foot is moving from supination at initial contact/loading response to full pronation at mid stance and then into supination from mid stance to terminal stance/pre-swing. I know that if the foot remains and pronation past mid stance that it is a poor lever and if it remains in supination prior to mid stance it will be a poor shock absorbers. Foot type plays into this displaying or amplifying the characteristics of that particular foot type during the gait cycle: if this occurs at a time other than when it supposed to occur, then we can see predictable biomechanics such as too much pronation resulting in increased rear foot eversion, midfoot collapse, abduction of the forefoot and internal rotation of the knee with most often medial knee fall. Now, consider these mechanics along with any torsions or versions in the lower extremity that the patient may have.

This Wednesday night we will be discussing foot types and their biomechanics. Join us on onlinece .com for Biomechanics 314 6:00 MST

Dr Ivo Waerlop, one of The Gait Guys

Yep, these shoes stink for this gal...

IMG_6882.jpg

Look at the left shoe and compare it to the right. See how the upper is canted on the outsole? This “varus cant” can create lots of problems or could actually be beneficial, believe it or not, depending upon the pathology.

In this particular persons story, it was NOT a good thing. They have an anatomical short leg on the left-hand side. If you remember from following us here in the past, generally speaking, the shorter leg tide tends to be more supinated and the forefoot tends to be in more varus. This means more of a “reach” with that foot during the contact phase of gait, Whether that’s running or walking. This generally means that the forefoot will pronate more on the long leg side.

This shoe “defect“ may actually be benefit for someone who has too much rear or mid foot pronation as it would “delay” pronation by starting to rearfoot in an inverted position at heel strike.

The Fix?

You could grind the sole into varus an equal amount to equal the varus cant. In our opinion, not a good idea.

You could return the shoe (that’s what this person is doing) and get another one

In addition, you could…

Give the person a 3 mm sole lift to correct for the leg length discrepancy

Make sure they have adequate range of motion in the first ray on the short leg side to be be able to plantar flex the 1st ray and reach the ground

Make sure they have adequate control of the core musculature as well as foot intrinsic musculature during stance phase.

Dr Ivo Waerlop, one of The Gait Guys

#badshoes #theshoeistheproblem #forefootvarus #leglengthdifference
#gaitproblem

Holy Forefoot Flare, Batman!


Some sources say foot strike pattern does not matter. We disagree.

Look at this gal who midfoot/forefoot strikes. She also has a forefoot supinatus, a plastic condition where the forefoot is inverted with respect to the rearfoot. Take that combination and put it in a shoe with a forefoot flare and what do you get? Can you say AMPLIFICATION?

We’re not saying this is a bad shoe or even the wrong shoe. But, if she is going to run in this shoe, we will need to help her gain more ROM in her forefoot ( and some pelvic and hip stability) dodge doesn’t have to crash into eversion on each landing.

Help your patients with shoe selection. Something with less of a lateral flare in the forefoot would certainly make her life easier.

Need to know more? Consider taking our National Shoe Fit Program: link here:

Dr Ivo Waerlop, one of The Gait Guys

#badshoes #forefootflare #thegaitguys #forefootsupinatus #lateralflare #inversion

Barefoot vs Shoes...It's about the strike pattern


Footnotes 7 - Black and Red.jpg

“The influence of strike patterns on running is more significant than shoe conditions, which was observed in plantar pressure characteristics. Heel-toe running caused a significant impact force on the heel, but cushioned shoes significantly reduced the maximum loading rate. Meanwhile, although forefoot running can prevent impact, peak plantar pressure was centered at the forefoot for a long period, inducing a potential risk of injury in the metatarsus/phalanx. Plantar pressure on the forefoot with RFS was lesser and push-off force was greater when cushioned shoes were used than when running barefoot.”


takeaways from the study?

  • forefoot strike reduces heel impact

  • rear foot strike reduces forefoot impact

  • forefoot strike increases and prolongs pressures (in shoes) on the forefoot which could potentially cause forefoot problems

  • cushioned shoes do not really change impact force but change (reduce) the rate of loading

  • in a forefoot strike, pressures are shifted more to the mid foot

want to know more? Join us this Wednesday, December 19th on online.com: Biomechanics 303







Sun XYang YWang LZhang XFu W. Do Strike Patterns or Shoe Conditions have a Predominant Influence on Foot Loading? J Hum Kinet. 2018 Oct 15;64:13-23. doi: 10.1515/hukin-2017-0205. eCollection 2018 Sep.

link to FREE FULL TEXT: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231350/





So you prescribe and fit orthotics you say ?

"It all matters, and quite possibly, if you do not know it all, you cannot help your client."

How about this then, you have someone with a rearfoot valgus with internal tibial torsion.  How are they going to load now? What if you throw in a valgus knee and femoral torsion variant?  Are they going to pronate more or less ? What if that person had just internal tibial torsion on one leg and not the other, yet they had 2 rearfoot valgus feet presentations.  Now what?

Ouch, that is a strong statement. It likely needs softened, but, there is some truth within those words. 

Last night we did our monthly lecture on www.onlineCE.com.  We had a packed room, biggest audience to date.  It is likely because people are realizing that the small stuff matters.  We talked for an hour on foot types and  how they present, how they potentially load, and how other mechanical issues above can impact how a foot type loads. 

We have all seen the pedographs like in the photo. The unwise depend on a static pedograph mapping for diagnostic help and God forbid that is all you use for making orthotics (that may only help if your client is  a professional stander), the more wise use the dynamic pedograph mapping to see how their client moves across the ground, and the wise use it as a mere piece of the data, combine it with a clinical exam, look far up into the biomechanical chain for other locomotive challenges that could change the dynamic loading pattern across the foot and ground.  What do we mean exactly ?  Well, a client with a rearfoot valgus foot type will load the heel and rest of the foot one way if they are doing a good job stacking the hip over the knee, and knee over the foot. But, if they have weakness in the hip affording a frontal plane drift of the pelvis over the foot, that is going to magnify the rearfoot valgus loading pattern (addendum: they could also tip into rearfoot varus posturing as well). That is just one example, of many.  In otherwords, it is the same foot type, but both of these are going to show a dynamic change in the loading pattern response. So, said another way, you cannot diagnose a foot type by the pedograph mapping. Nor should one make an orthotic for someone based off of a pedograph mapping, nor without an examination of the entire kinetic change.  What is your client able, and unable, to do? That is a big question, and when you start by asking those 2 questions, you get closer to the prize.  The pedograph only shows the static or dynamic pressures from the superincumbent load, it does not tell you if it is good or bad, and it does not tell you what they are doing, or why they are loading that way. It only shows the loading. Your job is to find out why they are loading that way, and then determine if that is part of their problem they have sought you out for.

So, does  your head spin now ? Does this suddenly make you sweat ? Do you realize you are missing pieces of the pie in helping your client?  Not yet maybe ?  How about this then, you have someone with a rearfoot valgus with internal tibial torsion. How are they going to load now? What if you throw in a valgus knee and femoral torsion variant? Are they going to pronate more or less ? What if that person had just internal tibial torsion on one leg and not the other, yet they had two rearfoot valgus feet presentations. Now what? Suddenly the loading is different in both feet and up the chains. There is likely going to be different challenges to limb spin control from side to side. This aberrant and asymmetrical loading is going to come up to a pelvis, upon which a single spinal column is trying to find a sound base of support and mobility to work and transfer loads from. 

And, what if this client also has some tibial varum on that same side ? What if they had external tibial torsion or some femoral torsional presentation on one side ?  You can see now how complicated this gets. And that is just on the structural components. What about the dynamic components ?  We here at The Gait Guys feel that this is all critical stuff to take into consideration and it is sometimes the stuff that is the tipping point between a successful management of a clients complaints, and unsuccessful.  

In closing, think about this. If you are sending out your orthotics for fabrication, have you conveyed this all to your fabricator ?  All they know is what a pedograph might show, and what the foot mold looks like. You have to provide them with all this other information, because essentially they are blind (this of course assumes your fabricator can mind juggle all the torsions, valgus/varus, pelvis drift loads etc,  oy vey ! That is hard to do !) This is why we do all of our modifications in office, in the rare case we need a temporary orthotic modification. But, we will aim to just correct what mechanics are aberrant and avoid the whole orthotic crutch when we are able. But lets face it, sometimes, for a period of time, we all need a crutch to get through a problem, to find better mechanics where we can strengthen from or gain protecting from temporarily.  That is what splints do, taping, crutches, braces, one might even argue what corrective exercises do. It is a path on the journey for your client, and sometimes they need help through the muddy parts.

And, don't be "that guy" that says orthotics are useless. They are a crutch , a tool. A small tool, one might argue that it should only be pulled out when the other tools are not working to get the job done.  Do not make them your first line of defense, except when that is called for.  After all, not all people were blessed with sufficient anatomical  and mechanical parts to avoid needing a crutch, so don't be "that guy" that preaches from that extreme, because it is not honest. Or, maybe, you just do not see the biomechanical messes we see in our clinics, that is quite the realistic possibility. 

Want to learn more about this kind of stuff? Keep up with our blog here. OR take some of our lecture recorded classes on www.onlineCE.com . We have a library of classes there for you to take anytime. And meet us once a month over there, every 3rd Wednesday. And, stay tuned for some new teaching gigs we have coming your way.

-Shawn and Ivo,  the gait guys

 

 

Podcast 123: The Rear foot: Understanding your RearFoot type

Key tag words:
foot types, rearfoot, forefoot, pronation, supination, shoe fit, forefoot varus, forefoot supinatus, rearfoot inversion, ankle rocker, injuries, rehab, corrective exercises

Rearfoot varus and Rearfoot valgus. Knowing the anatomy of your rear foot and its anatomic and functional posturing can lead to many problems in anyone. If you do not know the rearfoot type and posturing, you will not understand the rest of the foot mechanics. Without this knowledge, you will not know the reason for midfoot or forefoot problems, not understand what shoe you are in, or even why the shoe, footbed, orthotic you have chosen is either not fixing your problems, or causing them.  Join us on a journey down the rearfoot rabbit hole over the next hour.  Plus a few funny stories to lighten the biomechanics-heavy dialogue.
 

Show links:
http://traffic.libsyn.com/thegaitguys/pod_123final_cut.mp3

http://thegaitguys.libsyn.com/podcast-123-the-rear-foot-understanding-your-rearfoot-type

Show sponsors:
www.newbalancechicago.com

www.thegaitguys.com
That is our website, and it is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).
 
Our podcast is on iTunes, Soundcloud, and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.
 
Show Notes:

https://www.ncbi.nlm.nih.gov/pubmed/27134364

https://www.ncbi.nlm.nih.gov/pubmed/25364132

RearFoot positions:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3588658/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990938/

Powers CM, Maffucci R, Hampton S. Rearfoot posture in subjects with patellofemoral pain. J Orthop Sports Phys Ther. 1995 Oct;22(4):155-60.

Power V, Clifford AM. The Effects of Rearfoot Position on Lower Limb Kinematics during Bilateral Squatting in Asymptomatic Individuals with a Pronated Foot Type. J Hum Kinet. 2012 Mar;31:5-15. doi: 10.2478/v10078-012-0001-0. Epub 2012 Apr 3.

Shultz SP, Song J, Kraszewski AP, Hafer JF, Rao S, Backus , Mootanah R, Hillstrom HJ. An Investigation of Structure, Flexibility and Function Variables that Discriminate Asymptomatic Foot Types. J Appl Biomech. 2016 Dec 19:1-25. [Epub ahead of print]

 

Varus anyone?

Varus anyone?

Does patello femoral pain have anything to do with rearfoot varus? Perhaps, according to this study:

" A small but significant increase in rearfoot varus was found in the patellofemoral pain group compared with the control group (8.9 vs. 6.8 degrees; p = .0002). These results suggest that increased rearfoot varus may be a contributing factor in patellofemoral pain and should be assessed when evaluating the events at the subtalar joint and the lower extremity. In addition, it has been demonstrated that consistent rearfoot measurements can be obtained by an individual clinician."


Powers CM, Maffucci R, Hampton S. Rearfoot posture in subjects with patellofemoral pain. J Orthop Sports Phys Ther. 1995 Oct;22(4):155-60.

Do you know SQUAT? Have you seen SQUAT? Have patients/clients that LIKE to squat? Seen a foot that looks like this? Can you say REARFOOT VALGUS?

 "Significant changes in lower limb kinematics may be observed during bilateral squatting when rearfoot alignment is altered. Shoe pitch alone may significantly reduce peak pronation during squatting in this population, but additional reductions were not observed in the subtalar neutral position. Further research investigating the effects of footwear and the subtalar neutral position in populations with lower limb pathology is required."
 
So, what does this study tell us?

when rearfoot aliment changes, so do the kinematics (duh)
the surface (tilted into varus or inversion) or shoes (which are medially posted) can make or break the man (or women) when it comes to "peak" pronation (we knew that already; confirmation is always nice)
inverting the rearfoot can change ankle dorsiflexion (read "ankle rocker"); inverting the rearfoot seems to reduce it
inverting the rearfoot can change knee flexion; inverting the rearfoot seems to increase knee flexion
inverting the rearfoot can change hip abduction (and thus knee valgus); reducing it

Learn about the gait kinematics and clinical findings associated with this foot type, along with video clip examples and always entertaining discussion with us tomorrow night on onlinece.com: Biomechanics 308: Focus on the Rear Foot.  5PST, 6MST, 7 CST, 8EST


Power V, Clifford AM. The Effects of Rearfoot Position on Lower Limb Kinematics during Bilateral Squatting in Asymptomatic Individuals with a Pronated Foot Type. J Hum Kinet. 2012 Mar;31:5-15. doi: 10.2478/v10078-012-0001-0. Epub 2012 Apr 3.

#rearfootvalgus #squat #foottype

2012 Mar;31:5-15. doi: 10.2478/v10078-012-0001-0. Epub 2012 Apr 3.

The Effects of Rearfoot Position on Lower Limb Kinematics during Bilateral Squatting in Asymptomatic Individuals with a Pronated Foot Type.

Power V1, Clifford AM.

Author information

Abstract

Clinicians frequently assess movement performance during a bilateral squat to observe the biomechanical effects of foot orthotic prescription. However, the effects of rearfoot position on bilateral squat kinematics have not been established objectively to date. This study aims to investigate these effects in a population of healthy adults with a pronated foot type. Ten healthy participants with a pronated foot type bilaterally (defined as a navicular drop >9mm) performed three squats in each of three conditions: barefoot, standing on 10mm shoe pitch platforms and standing on the platforms with foam wedges supporting the rearfoot in subtalar neutral. Kinematic data was recorded using a 3D motion analysis system. Between-conditions changes in peak joint angles attained were analysed. Peak ankle dorsiflexion (p=0.0005) and hip abduction (p=0.024) were significantly reduced, while peak knee varus (p=0.028) and flexion (p=0.0005) were significantly increased during squatting in the subtalar neutral position compared to barefoot. Peak subtalar pronation decreased by 5.33° (SD 4.52°) when squatting on the platforms compared to barefoot (p=0.006), but no additional significant effects were noted in subtalar neutral. Significant changes in lower limb kinematics may be observed during bilateral squatting when rearfoot alignment is altered. Shoe pitch alone may significantly reduce peak pronation during squatting in this population, but additional reductions were not observed in the subtalar neutral position. Further research investigating the effects of footwear and the subtalar neutral position in populations with lower limb pathology is required.

Attempting to regain a level playing ground for your foot.

“Remember, we were born with both our rearfoot and forefoot designed to engage on the same plane (the flat ground). We were not born with the heel raised higher than the forefoot. And, the foot’s many anatomically congruent joint surfaces, their associated ligaments, the lines of tendon pull and all the large and small joint movements and orchestrations with each other are all predicated on this principle of a rearfoot and forefoot on the same plane. This is how our feet were designed from the start.  This is why I like shoes closer to zero drop, when possible, because I know that we are getting closer to enabling the anatomy as it was designed. This is not always possible, feasible, logical or reasonable depending on the problematic clinical presentation and there is plenty of research to challenge this thinking, yet plenty to support is as well. The question is, can you get back to this point after years of footwear compensating ? Or have your feet just changed too much, new acquired bony and joint changes that have too many miles on the new changes ? Perhaps you have spent your first 20-50 years in shoes with heeled shoes of varying heel-ball offset. Maybe you can get back to flat ground, maybe you cannot, but if you can, how long will it take? Months ? Years ?  It all makes sense to me, but does it make sense for your feet and your body biomechanics after all these years ? Time will tell.” -Dr. Allen

Fundamental foot skills everyone should have, subconsciously. This video shows a skill you must own for good foot mechanics. It needs to be present in standing, walking, squatting, jumping and the like. It is the normal baseline infrastructure that you must have every step, every moment of every day. 

Is your foot arch weak ? Still stuffing orthotics and stability shoes up under that falling infrastructure ? Try rebuilding a simple skill first, one that uses the intrinsic anatomy to  help pull the arch up.  If your foot is still flexible, you can likely re-earn much of the lost skills, such as this one. This is a fundamental first piece of our foot, lower limb and gait restoration program. We start here to be sure this skill is present, then add endurance work on it and then eventually strength and gait progressions. This is where it starts for us gang. 

Shawn and Ivo, the gait guys

Rearfoot to Hip Pathomechanical considerations.

In normal gait, the rearfoot strikes in slight inversion and then quickly moves through eversion in the frontal plane to help with the midfoot through forefoot pronation phases of gait. Some sources would refer this rearfoot eversion as the rearfoot pronatory phase, after all. pronation can occur at the rear, mid or forefoot. As with all pronation in all areas, when it occurs too fast, too soon or too much, it can be a problem and rearfoot eversion is no different.  If uncontrolled via muscles such as through tibialis posterior eccentric capabilities (Skill, endurance, strength) or from a structural presentation of Rearfoot Valgus pain can arise. 

From a scenario like in the video above, where a more rearfoot varus presentation is observed,  where the lateral to medial pronation progression is excessive and extreme in terms of speed, duration and magnitude this can also create too much lateral to medial foot, ankle and knee movement.  This will often accompany unchecked movements of internal spin through the hip. So one should see that these pronation and spin issues can occur and be controlled from the bottom or from the top, and hopefully adequately from both in a normal scenario.  It is when there is a biomechanical limitation or insufficiency somewhere in the chain that problems can arise. And remember, pain does not have to occur where the failure occurs, in fact it usually does not. So when you have knee pain from an apparent valgus posturing knee, make sure you look above and below that knee.  Also, keep in mind that as discussed last week in the blog post on ischiofemoral impingment syndrome (link), these spin scenarios can be quite frequently found with ipsilateral frontal plane lateral deviations (bumping of the hip-pelvis outside the vertical stacking of the foot-knee-hip stacking line). This stacking failure can also be the source of many of the issues discussed above, so be sure you are looking locally and globally. And remember, what you see is not the problem, it is their compensation around their deeper problem quite often.

If you have not read the blog post from last week on ischiofemoral impingement syndrome you might not know where the components of the cross over gait come in to play here nor how a rearfoot problem can present with a hip impingement scenario, so I can recommend that article one more time.

One last thing, just in case you think this stuff is easy to work through, remember that these rearfoot varus and valgus problems, and pronation rates. and limb spin rates are all highly variable when someone has varying degrees of femoral torsion, tibial torsion or talar torsion. Each case is different, and each will be unique in their presentation and in the uniqueness of the treatment recipe. I just thought I would throw that in to make your head spin a little in case it wasn’t already.

For example, a case where the rearfoot is a semi rigid varus, with tibial varum, and frontal plane lateral pelvic drift with components of cross over gait (ie. the video case above) will require a different treatment plan and strategy than the same rearfoot varus in a presentation of femoral torsion challenges and genu valgum. Same body parts, different orientations, different mechanics, different treatment recipe.  

So, you can fiddle with a dozen pair of shoes to find one that helps minimize your pains, you can go for massages and hope for the best, you can go and get activated over and over, you can try yet another new orthotic, you can go to a running clinic and try some form changes, throw in some yoga or pilates, compression wear, voodoo bands and gosh who knows what else. Sometimes they are the answer or stumble across it … or you can find someone who understands the pieces of the puzzle and how to piece a reasonable recipe together to bake the cake just right. We do not always get there, but we try.  

Want more ? Try our National Shoe Fit certification program for a starter or try our online teleseminars at www.onlinece.com (we did a one hour course on the RearFoot just the other night, and it was recorded over at onlineCE.com).

Dr. Shawn Allen,  of the gait guys


Reference:

Man Ther.  2014 Oct;19(5):379-85. doi: 10.1016/j.math.2013.10.003. Epub 2013 Oct 29.Clinical measures of hip and foot-ankle mechanics as predictors of rearfoot motion and posture.  Souza TR et al.

Health professionals are frequently interested in predicting rearfoot pronation during weight-bearing activities. Previous inconsistent results regarding the ability of clinical measures to predict rearfoot kinematics may have been influenced by the neglect of possible combined effects of alignment and mobility at the foot-ankle complex and by the disregard of possible influences of hip mobility on foot kinematics. The present study tested whether using a measure that combines frontal-plane bone alignment and mobility at the foot-ankle complex and a measure of hip internal rotation mobility predicts rearfoot kinematics, in walking and upright stance. Twenty-three healthy subjects underwent assessment of forefoot-shank angle (which combines varus bone alignments at the foot-ankle complex with inversion mobility at the midfoot joints), with a goniometer, and hip internal rotation mobility, with an inclinometer. Frontal-plane kinematics of the rearfoot was assessed with a three-dimensional system, during treadmill walking and upright stance. Multivariate linear regressions tested the predictive strength of these measures to inform about rearfoot kinematics. The measures significantly predicted (p ≤ 0.041) mean eversion-inversion position, during walking (r(2) = 0.40) and standing (r(2) = 0.31), and eversion peak in walking (r(2) = 0.27). Greater values of varus alignment at the foot-ankle complex combined with inversion mobility at the midfoot joints and greater hip internal rotation mobility are related to greater weight-bearing rearfoot eversion. Each measure (forefoot-shank angle and hip internal rotation mobility) alone and their combination partially predicted rearfoot kinematics. These measures may help detecting foot-ankle and hip mechanical variables possibly involved in an observed rearfoot motion or posture.

tumblr_n7yjg9vOg61qhko2so1_r1_1280.jpg
tumblr_n7yjg9vOg61qhko2so2_1280.jpg
tumblr_n7yjg9vOg61qhko2so3_r1_500.gif

Flat Dogs

Take a look at these pedographs. Wow!

  • No rear foot heel teardrop.
  • No midfoot arch on left foot and minimal on right.
  • An elongated 2nd metatarsal bilaterally and forces NOT getting to the base of the 1st metatarsal and stalling on the 2nd: classic sign of an uncompensated forefoot varus.
  • increased printing of the lateral foot on the right

Knowing what you know about pronation (need a review? click here) Do you think this foot is a good lever? Do you think they will be able to push off well?

What can we do?

  • foot exercises to build the intrinsic and extrinsic muscles of the foot (click here, here, here, and here for a few to get you started)
  • perhaps an orthotic to assist in decreasing the pronation while they are strengthening their foot
  • motion control shoe? Especially in the beginning as they are strengthening their feet and they fatigue rather easily

The prints do not lie. They tell the true story of how the forces are being transmitted through the foot. For more pedograph cases, click here.

The Gait Guys. Teaching you more about the feet and gait. Spreading gait literacy throughout the net! Do your part by forwarding this post to someone who needs to read it.

Look at that forward lean and glute development !

There now, maybe we tricked you into finally reading one of our bigfoot / Gigantopithecus blog posts. These blog posts were highly informative yet sadly under viewed compared to our regular posts. We suspect only the true gait geeks found those worth of their time but maybe they were misleadingly superficial to the quick browsing viewer. And that is ok, to each his/her own. But if you want to learn about your own species and problems we have as humans it is always helpful to look at our distant species “relatives” to see where we came from.

In this video you will see this Silver Back walking on 2 limbs, this is quite a rare event to see. In this clip you can see a gorgeous forward lean and the subsequent midfoot strike that occurs when the foot fall occurs with the body mass directly over the foot.  If you look closely you will also see that this gorilla is carrying a log in his left hand, which is one of the theories postulated as to why we evolved to bipedal ambulation, to carry objects over a distance. You should note the increased arm swing in the contralateral hand which is always seen when one arm swing is impaired from carrying things or from injury. This same pendulum alteration occurs in the lower limb when there is an injury and thus a weight bearing alteration, such as ambulating on a sprained ankle.  If you still do not believe us, strap a 5 pound ankle weight to one ankle and note the immediate change in step and stride in both limbs.  In subtle injuries or merely in the presence of pain, the gait cycle is altered a subtle level, and this is where gait compensations often begin.

in the normal walking gait cycle, rear foot strike is normal. But we at The Gait Guys tend to have our clients focus more on heel “contact” as opposed to a true “strike”. The difference is one of how aggressively the foot’s heel interacts with the ground at initial contact. We all have a family member or neighbor that can be heard upstairs sounding like they are pounding nails into the floor when it is really just their normal heel strike.  The best way to help someone to reduce this pounding habit is to increase their forward torso lean and to educate them on heel contact on impact.  The lean must come from the ankles, not from the waist. It is like walking into a heavy wind, you must lean your whole body (we use a queue of “raise your chest a little and lead from the chest” and this often helps stop a collapse into the core and flexion from the waist). And when one does this, the foot cannot progress so far out in front of the body and generate that aggressive heel strike. One is close to midfoot strike at this point when the correction is made properly.  This is similar to Pose running technique but it is just simply good form running technique to hit a nice soft midfoot impact each time.  

We talked more about heel strike in Gigantopithecus last week in this blog post. And, we also mentioned the perpetual knee flexion to dampen the head oscillations.  

Shawn and Ivo, The Gait Guys, and aspiring primatologists apparently.

Injures induced by running the same direction on an indoor/outdoor track.

We have been seeing, addressing and treating this problem for years, far too many years. There are few things that frustrate us more than coaches and athletes who refuse to alternate their track workouts into the clockwise direction to help avoid the repetitious detrimental training effects of continued and repeated counterclockwise track training. 

Here is a study from 2000 that tends to validate a causal link to our point. The study confirms a statistically significant asymmetrical strength development in the hindfoot invertor and evertor muscle groups. 

Imbalances are a frequent and well known cause of injury.  Consciously driving this asymmetry is the equivalent to purposefully encouraging injury if you as us.  Why anyone would not heed recommendations to balance out workout effects is beyond us.  We encourage road work so that there are no repetitive track banks to negotiate and thus knowingly drive asymmetry.  When weather makes outdoor work an impossibility then days should ideally alternate the flow on the track to counter the direction of the previous day.  And as track event days get closer then the inevitable will occur that you want to simulate race day direction but at least deeply engrained (skill, endurance and strength) training effects in the counterclockwise direction will not terribly risk injury as much as if there had been no training changes and accommodations.

The smaller the track radius the more detrimental the training effects. Frequency and duration of the training further magnifies training effects. A banked track will mute some of the effects but not all of them. 
So why not just reverse the direction of your track training ?  And don’t tell is it is logistically too difficult to coordinate, that is a lame excuse. You are training yourself or your athletes to be better runners, so you should want to reduce risks and optimize training effects. Period.

Shawn and Ivo……… The Gait Guys

Clin J Sport Med. 2000 Oct;10(4):245-50.

Asymmetrical strength changes and injuries in athletes training on a small radius curve indoor track.

Beukeboom C, Birmingham TB, Forwell L, Ohrling D.

Abstract

OBJECTIVES:

1) To evaluate strength changes in the hindfoot invertor and evertor muscle groups of athletes training and competing primarily in the counterclockwise direction on an indoor, unbanked track, and 2) to observe injuries occurring in these same runners over the course of an indoor season.

DESIGN:

Prospective observational study.

SETTING:

Fowler-Kennedy Sport Medicine Clinic, The University of Western Ontario, London, Ontario.

PARTICIPANTS:

A convenience sample of 25 intercollegiate, long sprinters (200-600 m) and middle distance runners (800-3,000 m) competing and training with the 1995-1996 University of Western Ontario Track and Field team.

MAIN OUTCOME MEASURES:

A standardized protocol using the Cybex 6000 isokinetic dynamometer was used to measure peak torques of the hindfoot invertor and evertor muscle groups of both limbs using concentric and eccentric contractions performed at angular velocities of 60, 120, and 300 degrees/sec. Changes in peak torques between the preseason and postseason values were calculated and compared using a repeated measures analysis of variance test. Injury reports were collected by student athletic trainers and in the Sport Medicine and Physiotherapy clinic.

RESULTS:

Primary analysis indicated that the left (inside limb) invertors increased in strength significantly more than the right (outside limb) invertors (p = 0.01), while the right evertors increased in strength significantly more than the left evertors (p = 0.04). A high incidence of lower extremity injury (68%) occurred in this sample of runners, corresponding to an injury rate of 0.75 injuries per 100 person-hours of sport exposure. Although sample size was limited, secondary analysis indicated that strength changes were not significantly different for injured (n = 17) and uninjured (n = 8) runners (p > 0.05).

CONCLUSIONS:

The observed small, but statistically significant, asymmetrical changes in strength of the hindfoot invertor and evertor muscle groups can best be described as a training effect. Altered biomechanics proposed to occur in the stance foot while running on the curve of the track are discussed in relation to the observed strength imbalance. A causal link between strength changes and lower extremity injuries cannot be inferred from this study, but suggestions for further research are made.

tumblr_mekfl3JSiq1qhko2so1_1280.jpg
tumblr_mekfl3JSiq1qhko2so2_1280.jpg

The Great Myth of Rotating your Shoes : Here are the Actual Facts as we see them.

Everyone has heard the rules, rotate into new shoes about every 400-500 miles.  We disagree, kind of, and we have talked about it on previous blog posts in the past and on our podcasts.  Many shoe reps have agreed with the methods we employ for our runners.

The EVA foam often used in shoe manufacturing has a lifespan, or better put, a given number of compression and shear cycles. It can go through a rather fixed number of compression cycles before it loses its original structural properties, the older the foam gets the faster the degradation process and the more risks it poses for runners.  It is known that EVA foam compressed into a focal vector or area over and over again becomes softer and more giving into that vector/area over time.  Hence, if you have a compensation pattern or a known foot type (forefoot varus, forefoot valgus, rearfoot varus, rearfoot valgus or a combination of these 4) you will break down a certain region or zone of the shoe’s EVA foam. For example a forefoot varus foot type will often drive some heavy focal compression into the foam under the first metatarsal. However, if you combine it with a rear foot valgus it will drive shear forces and compression into the  EVA foam along the entire medial aspect of the shoe (see the 2 pictures attached, you can see the evidence of excessive medial compression and medial shear in a foot that has severe rearfoot valgus and forefoot varus. This is a very poor shoe prescription for the foot type involved).

Here is what you need to do / know:

1- Know your athletes foot type so you can make more informed decisions.

2- Know the type of foam of the shoes you are recommending (ie. Altra uses A-Bound foam instead of EVA just as an example. A-Bound is an environmentally friendly energy-return compound is made of recycled materials. It reduces the impact of hard surfaces while still maintaining ground feedback. Traditional running shoe foam compresses 70-90% while A-Bound™ compresses 2-3x less so it won’t deform over time.).  Cheap shoes use cheap materials.  Altra goes the extra mile for foam quality and many others are beginning to follow suit. If you think you are getting a deal on shoes, know what “the deal” is, it just may be cheaper materials.

3-  500 miles is not the rule for everyone and every shoe.  If you have a relatively neutral forefoot and you are a forefoot or midfoot strike runner you will get far more miles out of a shoe.  If you depend on a stability shoe with dual densities of foam to slow your pronation and control your medial foot because of a rearfoot valgus and/or forefoot varus know that the shoe’s foam will break down less uniformly because of foam interface junctions and whatnot.  This is a science. Engineers call it “the mechanics of material deformation”.  We wonder how many mechanical engineers shoe companies have on board in their R&D divisions ?  We know for a fact that a few do not. There was a reason we snuck quietly into the mechanical engineering departments of our Alma Mater and sat quietly in the “Materials” classes. At the time our roommates just told us it was  cool class, little did we know why it was so interesting to us, until now.

4- Here is what we recommend. Fit the foot type to the right shoe selection. If you are weak in this territory consider taking our intense “National Shoe Fit” program. Fit is everything. Make the wrong choice for your client and the shoes will break down quicker and into poor and risky patterns. Make the right choice and be their hero. If you are looking for a way to improve clientele happiness and store loyalty our Shoe Fit Program is the way. Just read the testimonials here on our blog. Some of the top stores in the Nation have quietly taken the National Shoe Fit Program from us, they have good reason to. They also have good reason to keep it quiet, to get the edge on the competition.

You can email us to get this information and the e-file program download. Why not certify your entire store staff ?

Email us at   thegaitguys@gmail.com.  This program will teach you foot anatomy, functional anatomy, shoe anatomy, foot types and matching foot type to shoe type as well as many other aspects of gait and lower limb biomechanics.

* 5- Try this recommendation.  At 250 miles buy a new shoe to accompany your shoe that already has 250 miles. Now you are rotating 2 shoes. From this 250 mile point moving forward, alternate the newer show with the older shoe. This way you are never in a shoe that is notably more deformed in a specific area of the EVA foam because of your compensations, limitations or foot type. Essentially you are always just a day away from a newer shoe that has less driving force into abnormally compressed EVA foam.  The older the shoe gets the more it accelerates your foot and body into that deformation and hence why many injuries occur as their shoes get older. Continue to alternate shoes on every other run (new, old, new, old).  Once you hit 400-500 miles on the old shoes, ditch them and get a new pair again to restore the cycle once again.  In fact, to be specific here is what we recommend. Monday, old shoe. Tuesday, new shoe. Wednesday do not run, rather, rest or cross train. Thursday go back to the older shoe. Friday new shoe and repeat. This way you are 4 days between runs in the older more deformed shoe. The one day off running in mid week gives tissues that were challenged by the “old shoe run” a bit more time to repair.

6- Dedicate your shoes to running only. Running gait is not the same as walking gait. Why would you want to break down the EVA foam at the rear foot during walking (because heel strike is normal in walking) when in running you are a mid-forefoot striker ?  Keep walking shoes for walking, running shoes for running. Otherwise you are just asking for trouble.

Check out our National Shoe Fit program and certification process here as well as links to our other teaching DVD’s & e-downloads:
 http://store.payloadz.com/results/results.asp?m=80204

Shawn and Ivo. Helping you use your head (and shoe knowledge) better everyday.
The Gait Guys  (have you checked out our RebelMouse page ? https://www.rebelmouse.com/TheGaitGuys/

Keeping up with our awesome informative podcasts ? It is all free stuff ! https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138

How about our youtube channel ? http://www.youtube.com/user/thegaitguys

How about our Facebook PAGE ?  https://www.facebook.com/pages/The-Gait-Guys/169366033103080

tumblr_lo77y0LOcc1qhko2so1_1280.jpg
tumblr_lo77y0LOcc1qhko2so2_1280.jpg

Time for a quick pedograph case:

This person presented with arch pain and occasional forefoot pain.

Note the increased size (length) of the heel print with blunting at the anterior most aspect. The midfoot impression is  increased, revealing collapsing medial longitudinal arches. The forefoot print has increased pressures over the 2nd metatarsal heads bilaterally, and the 1st on the left. She claws with toes 2-4 bilaterally.

This demonstrates poor intrinsic stability of the foot (as evidenced by the increased heel impression and midfoot collapse) and well as decreased ankle rocker (as evidenced by the increased forefoot pressures).

We also see increased ink under the distal second digit (esp on the right). This suggests some possible incompetence of the first ray complex and big toe, which is represented by the medial ink presentation under the great toe (suggesting a pinch callus, which is seen when there is spin of the foot and insufficient great toe anchoring and push off).  When the great toe function is compromised, we tend to see increased activity of the 2nd digit long flexors, represented well here by increased ink under the 2nd toe.

The pedograph truly does provide a window to the gait cycle!

We remain: Gait Geeks