Here is a great case from a reader.


“Hey guys, I absolutely love the show, especially as it becomes less and less over my head. Due to your love of gait-altering absurdly thick EVA midsoles, I thought you might like to check out this Hoka in…

Here is a great case from a reader.

“Hey guys, I absolutely love the show, especially as it becomes less and less over my head.

Due to your love of gait-altering absurdly thick EVA midsoles, I thought you might like to check out this Hoka incident that occurred at the Marathon des Sable across the Sahara in Morocco, a 6 day 251km event. It was posted by Ian Corless at Talk Ultra Podcast. Apparently the medial side of the midsole collapsed–on DAY 2! This guy finished the race, and as you have to carry 100% of your gear and nutrition, I guess he only had the one pair. It looks like this runner should fly out to CO or IL asap, because if he didn’t have gait issues before, he is sure to have them now.”

This brings up some scary thoughts when it comes to the amount of EVA foam and quality of foam (EVA or otherwise) being used in some shoes.  "The more foam there exists, the greater one can break down into their compensation or deforming strategy.“ What do we mean by this ?  Well, two things should be on one’s mind:  1. all foam breaks down into the vector of the deforming forces and 2. most of us do not have perfectly clean biomechanics, thus an abnormal loading vector is most likely present. These aberrant biomechanics are eventually reflected into our shoes as a "wear pattern”.  In this case, the EVA foam had progressively broken down into their rearfoot pronation (and likely mid and forefoot pronation). In this case, even if the person had enough tibialis posterior and other medial pronation-decelerating structure strength at the start, the acceleration of their foot into this issue is now even more abrupt, brisk, excessive etc.  A new pair of shoes would not be broken down into this deformity and so a newer pair of shoes is preventive. This is why we recommend new shoes often, and the cycling in of another pair (or several pair) into the mix so that one is never driving the same shoes into the potentially destructive compensation patterns that most of us  have.  At least with a fresh pair of shoes brought into the mix at the 200 mile wear point, you would only be in the more destructive shoes every other run, giving the body time to recuperate more. 

As for this pair of shoes, this runner either has a terrible right foot problem or this was a brutally flawed right shoe from the get go, or both. We can only imaging how painful the medial knee might be at this point.  Furthermore, imagine the abrupt nature of the hip internal rotation mechanics ! IF they do not have hip labrum impingement yet, they will soon !  And with that amount of internal limb spin, can you imagine how inhibited the glutes would be from constantly having to eccentrically control that excessive rotation? 

As a whole, are not huge fans of the HOKA shoe family, we just cannot fathom the need for this much foam under the feet. If you have been with us long enough you will have heard on our podcast and blog talk about increased impact forces with increasing EVA foam thickness (want that info, here is the link and references). Just because some EVA foam is good, doesn’t mean more is better.  Remember, to propulse off of a foam infrastructure you must bottom out/compress the foam sufficiently to find a firmness to propulse from. The Hoka’s have plenty of foam making this our concern, and we are not picking on just them. There are other companies doing this “super sizing/super stacking” such as Brooks, Altra, and New Balance to name just a few.  Sure they have added a greater forefoot rocker/toe spring on the front of the shoe to help (they have to because the foam thickness is so great that there is no flexing of the forefoot of the shoes), but is it enough for you? Remember, every biomechanical phase of the gait cycle is necessary and timely to engage the natural joint, ligament, muscle components of joint loading, mobility, stability and movement. If you spend too much time in one phase (perhaps because you are waiting for foam to decompress) you may wait a moment too long and miss the opportunity for another critical phase to begin in the sequence.  This is the root cause of many injuries, aberrant biomechanics leading to aberrant mobility or stability. 

So remember these few things:

1. more is not always better for you, it may be for some, but maybe not you.

2. there is a price to pay somewhere in the mechanical system, after all the body is a contained system. What doesn’t happen at one joint often has to be made up at the next proximal or distal joint.

3. Everyone has some aberrant mechanics. No one is perfect. These imperfections will reflect in your shoes, and the longer you are in a pair of shoes the deeper the aberrant mechanics will be reflected in your shoe, thus acting as a steering wheel for the aberrant pattern (the steering is more direct/ more aggressive than in a new pair of shoes). So keep at least 2 pair of shoes rotating in your run cycle, one newer and one half done. We even recommend 3 pairs often.  Trust us, the sudden biomechanical shift from a dead shoe into a new one (even though it is a clean new shoe without bad patterns in it) is still a biomechanical shift and could cause adaptive phase problems, pain or injury.

Lots to consider in this game. It is not just about dropping into barefoot and taking off down your street. Not if you want to be doing this for a long time and stay healthy.

Shawn and Ivo, the gait guys

* next day follow up from our social media pages:

Along the lines of EVA and yesterdays post: 

“Wear of the EVA consistently increased heel pad stresses, and reduced EVA thickness was the most influential factor, e.g., for a 50% reduction in thickness, peak heel pad stress increased by 19%. ”

This study looks at a model; it would be interesting to see this study with a large cohort.

Biomed Mater Eng. 2006;16(5):289-99.

Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.

Even-Tzur N1, Weisz E, Hirsch-Falk Y, Gefen A.

http://www.ncbi.nlm.nih.gov/pubmed/17075164

tumblr_mekfl3JSiq1qhko2so1_1280.jpg
tumblr_mekfl3JSiq1qhko2so2_1280.jpg

The Great Myth of Rotating your Shoes : Here are the Actual Facts as we see them.

Everyone has heard the rules, rotate into new shoes about every 400-500 miles.  We disagree, kind of, and we have talked about it on previous blog posts in the past and on our podcasts.  Many shoe reps have agreed with the methods we employ for our runners.

The EVA foam often used in shoe manufacturing has a lifespan, or better put, a given number of compression and shear cycles. It can go through a rather fixed number of compression cycles before it loses its original structural properties, the older the foam gets the faster the degradation process and the more risks it poses for runners.  It is known that EVA foam compressed into a focal vector or area over and over again becomes softer and more giving into that vector/area over time.  Hence, if you have a compensation pattern or a known foot type (forefoot varus, forefoot valgus, rearfoot varus, rearfoot valgus or a combination of these 4) you will break down a certain region or zone of the shoe’s EVA foam. For example a forefoot varus foot type will often drive some heavy focal compression into the foam under the first metatarsal. However, if you combine it with a rear foot valgus it will drive shear forces and compression into the  EVA foam along the entire medial aspect of the shoe (see the 2 pictures attached, you can see the evidence of excessive medial compression and medial shear in a foot that has severe rearfoot valgus and forefoot varus. This is a very poor shoe prescription for the foot type involved).

Here is what you need to do / know:

1- Know your athletes foot type so you can make more informed decisions.

2- Know the type of foam of the shoes you are recommending (ie. Altra uses A-Bound foam instead of EVA just as an example. A-Bound is an environmentally friendly energy-return compound is made of recycled materials. It reduces the impact of hard surfaces while still maintaining ground feedback. Traditional running shoe foam compresses 70-90% while A-Bound™ compresses 2-3x less so it won’t deform over time.).  Cheap shoes use cheap materials.  Altra goes the extra mile for foam quality and many others are beginning to follow suit. If you think you are getting a deal on shoes, know what “the deal” is, it just may be cheaper materials.

3-  500 miles is not the rule for everyone and every shoe.  If you have a relatively neutral forefoot and you are a forefoot or midfoot strike runner you will get far more miles out of a shoe.  If you depend on a stability shoe with dual densities of foam to slow your pronation and control your medial foot because of a rearfoot valgus and/or forefoot varus know that the shoe’s foam will break down less uniformly because of foam interface junctions and whatnot.  This is a science. Engineers call it “the mechanics of material deformation”.  We wonder how many mechanical engineers shoe companies have on board in their R&D divisions ?  We know for a fact that a few do not. There was a reason we snuck quietly into the mechanical engineering departments of our Alma Mater and sat quietly in the “Materials” classes. At the time our roommates just told us it was  cool class, little did we know why it was so interesting to us, until now.

4- Here is what we recommend. Fit the foot type to the right shoe selection. If you are weak in this territory consider taking our intense “National Shoe Fit” program. Fit is everything. Make the wrong choice for your client and the shoes will break down quicker and into poor and risky patterns. Make the right choice and be their hero. If you are looking for a way to improve clientele happiness and store loyalty our Shoe Fit Program is the way. Just read the testimonials here on our blog. Some of the top stores in the Nation have quietly taken the National Shoe Fit Program from us, they have good reason to. They also have good reason to keep it quiet, to get the edge on the competition.

You can email us to get this information and the e-file program download. Why not certify your entire store staff ?

Email us at   thegaitguys@gmail.com.  This program will teach you foot anatomy, functional anatomy, shoe anatomy, foot types and matching foot type to shoe type as well as many other aspects of gait and lower limb biomechanics.

* 5- Try this recommendation.  At 250 miles buy a new shoe to accompany your shoe that already has 250 miles. Now you are rotating 2 shoes. From this 250 mile point moving forward, alternate the newer show with the older shoe. This way you are never in a shoe that is notably more deformed in a specific area of the EVA foam because of your compensations, limitations or foot type. Essentially you are always just a day away from a newer shoe that has less driving force into abnormally compressed EVA foam.  The older the shoe gets the more it accelerates your foot and body into that deformation and hence why many injuries occur as their shoes get older. Continue to alternate shoes on every other run (new, old, new, old).  Once you hit 400-500 miles on the old shoes, ditch them and get a new pair again to restore the cycle once again.  In fact, to be specific here is what we recommend. Monday, old shoe. Tuesday, new shoe. Wednesday do not run, rather, rest or cross train. Thursday go back to the older shoe. Friday new shoe and repeat. This way you are 4 days between runs in the older more deformed shoe. The one day off running in mid week gives tissues that were challenged by the “old shoe run” a bit more time to repair.

6- Dedicate your shoes to running only. Running gait is not the same as walking gait. Why would you want to break down the EVA foam at the rear foot during walking (because heel strike is normal in walking) when in running you are a mid-forefoot striker ?  Keep walking shoes for walking, running shoes for running. Otherwise you are just asking for trouble.

Check out our National Shoe Fit program and certification process here as well as links to our other teaching DVD’s & e-downloads:
 http://store.payloadz.com/results/results.asp?m=80204

Shawn and Ivo. Helping you use your head (and shoe knowledge) better everyday.
The Gait Guys  (have you checked out our RebelMouse page ? https://www.rebelmouse.com/TheGaitGuys/

Keeping up with our awesome informative podcasts ? It is all free stuff ! https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138

How about our youtube channel ? http://www.youtube.com/user/thegaitguys

How about our Facebook PAGE ?  https://www.facebook.com/pages/The-Gait-Guys/169366033103080

Materials: Do soft soles improve running shoes ?

BioMechanics
April 1998
Materials: 
Do soft soles improve running shoes?
Most athletic shoes advertise injury protectiong through “cushioning,” but real world studies have not shown impact moderation.
By Steven Robbins, MD, Edward Waked, PhD, and Gad Saad, PhD

here are their conclusions word for word:

Please honor the authors and purchase the article for your own use.

Conclusion
“Shoes with cushioning fail to absorb impact when humans run and jump, and amplify force under certain conditions, because soft materials used as interfaces between the foot and support surface elicit a predictable reduction in impact-moderating behavior.5-10,13-17 This behavior is not a response to sensations directly caused by impact because, whereas barefoot humans estimate impact precisely, humans judge it inaccurately when shod.14-17 This situation has recently been made clearer. Reduction of impact-moderating behavior is a response to loss of stability induced by soft-soled cushioned shoes: Humans reduce impact-moderating behavior in direct relation to increased instability.27 This is presumably an attempt to achieve equilibrium by obtaining a stable, rigid support base through compression of sole materials.27
After considering footwear advertising, additional factors appear to influence impact-moderating behavior. Recent reports also indicate that humans reduce impact-moderating behavior, thereby amplifying impact, when they are convinced that they are well protected by the footwear they are wearing. Advertising that suggests good protection results in higher impact, whereas advertising that suggests injury risk attenuates impact.19 Deceptive advertising, suggesting that expensive cushioned footwear offers advanced technology that protects against impact, accounts for the 123% greater frequency of injuries with the most expensive shoes found by Marti.18
Public health could be advanced through truth in advertising of footwear products with cushioned soles. Furthermore, footwear must be required to provide good balance. Current athletic footwear undoubtedly causes falls, since footwear with thick yielding soles destabilizes humans by as much as 300% compared with hard-soled shoes.
Now that the destabilizing nature of cushioned footwear is well established, continued manufacture of these hazardous items without explicit warning labels represents risk for liability claims from users who are injured from falls and ankle sprains while wearing them. In the context of this report, footwear that provides superior balance will probably be effective at attenuating vertical impact. Clearly, highly resilient materials must be removed from shoe soles for many reasons. This move will portend better health through improved stability and fewer injuries from excessive repetitive impact in sports. ”