Internal tibial torsion + femoral retrotorsion + twisting = low back pain

note the internal tibial torsion and lack of internal rotation of the right hip secondary to femoral retroversion

note the internal tibial torsion and lack of internal rotation of the right hip secondary to femoral retroversion

internal rotation of less than 0 on the left hip

internal rotation of less than 0 on the left hip

Here’s one that we’ve talked about before. Think about internal tibial torsion for a moment. You remember when the tibial tuberosity points straightahead and the foot points inward? 

Now combine that with femoral retro torsion. Remember that that’s when the angle of the femoral neck with the shaft is less than 8° which results in a loss of internal rotation of the hip. 

Put those two together and you have a foot that points inward and limited internal rotation of the hip on that same side. 

Stand on your right leg with your foot turned in. Twist your body to the right. Can you see how this is internal rotation of the right hip?

If people have to create internal rotation of the hip, then the motion has to occur somewhere. If it is not available at the hip and the lower extremity is fully internally rotated it has to occur north of the hip which is usually in the lumbar spine. Now think about when people are lifting things. Often times they do not do a hip hinge and reverse or flatten their lumbar lordosis, opening up the facet joints which allows more rotation. Do you remember that rotation of the lumbar spine is limited to about 5° unilaterally? Where do you think that hip rotation is going to occur? Hmmmm... Probably north of the hip. 

Better teach them to spin that weight bearing leg and foot out into some external rotation to create that needed range of motion, increase the amount of internal rotation of that hip or have them keep their shoulders and hips in the same plane when rotating.

Dr Ivo Waerlop, one of The Gait Guys 

#backpain #hipinternalrotation #internaltibialtorsion #retrotorsion #femoralretrotorsion 

The case of the lateral thigh, leg and knee pain

note how the bottom of the heel cup is rounded

note how the bottom of the heel cup is rounded

IMG_7238.jpg

This gal  came to see us with pain in the lateral thigh, knee, and lateral lower leg on the left. It has happened recently with skiing and alleviated only temporarily with acupuncture of the vastus lateralis and peroneal groups. She has been skiing with a foot bed (please see picture).

Evaluation reveals mild bilateral external tibial torsion, a right anatomically short  leg tibial, and bilateral medial knee fall (knee is medial of the sagittal plane) L>R during weight-bearing when the feet are pointing straight ahead. There is moderate loss of the medial longitudinal arches bilaterally, greater on the left.

We remember that when a patient has external tibial torsion, when the knees points straight the feet point to the outside. 

Translated to skiing, the feet need to be straightahead which brings the knee(s) inside of the sagittal plane. 

We remember that often times with leg length discrepancy is, the longer leg side will “pronate ” in attempt to shorten extremity and the shorter leg side “supinate”, in an attempt to lengthen the extremity.

Putting this all together:  the patient is pronating bilaterally, left greater than right with medial knee fall. The ski shop put the footbed you see in the picture in both of the patients boots. You can see that it is extremely rounded at the heel and, because orthotics are shank dependent devices, a round heel like this will just roll into pronation as there is more weight on the medial longitudinal arch. This makes the entire foot bed assembly relatively ineffective and increases the valgus moment at the knee, stressing the vastus lateralis as it is trying to pull the knee to midline as well as the peroneal group as it is trying to do the same from a closed chain position as well as supinate the foot. 

We placed a 3 mm sole lift under the right foot and added a post to the bottom the left orthotic to allow it to sit flat. This did not correct the problem completely and we needed to add a Morton’s toe extension (post under the first metatarsal) to invert the foot and bring the knee out into the sagittal plane.

Dr Ivo Waerlop, one of The Gait Guys 

#footbeds #kneepain #orthotics #skibootfit #thighpain #legpain #quadriceps

The consequences of an inverted forefoot

A forefoot that is inverted with respect to the rearfoot. Whether it is a forefoot varus, forefoot supinatus or an everted rearfoot ( because the forefoot is still inverted with respect to the rearfoot), what are the biomechanical sequelae?

If we accept the premise that the foot is basically a tripod between the calcaneus, base of the first and base of the fifth metatarsal‘s, we know that all of these parts needs to be on the ground at certain points in the gait cycle. Forces should travel from the calcaneus, up the lateral aspect of the foot, across the metatarsal heads to the first metatarsal head and hopefully out through the hallux.

The foot should hit the ground in slight inversion of the entire foot at initial contact and pronate through the middle of mid stance and then supinate through the remainder of the gait cycle. There’s an intricate balance of biomechanical events that must occur, especially in the latter half of the gait cycle when the rear foot is inverting where the forefoot is everting, so that we can have high gear push off through the distal first ray.

If the forefoot remains inverted then somehow the head of the first metatarsal needs to be brought down to the ground. If there’s not adequate range of motion in the foot, particularly the first ray, then you may pronate through the midfoot, rearfoot or in cases where this is insufficient, bring them immediately over the foot to get it down. This of course shifts center of gravity to midline and the body above must compensate in someway.

Take a look at this video footage and what do you see? She strikes on the outside of her foot but does not have adequate motion in her forefoot and therefore “crashes“ down on the forefoot, forcing a valgus moment into the ankle and the need to shift immediately by the pelvis attempts to dampen it. Notice how this is worse on the right side with more medial knee shift, pelvic shift as well as a lateral bending of the body to the right. Notice also how the upper body twists more to the left than to the right.

So what’s the fix? Well the answer is, “what’s bothering the patient?” We don’t necessarily fix what we see; we correlate what we see with what the patient’s symptoms are because that’s usually why they show up in your office. Yes, we do get people from time to time that come in strictly for “performance enhancement“ but this is pretty rare.

This woman has very little motion and plantar flexion of the first Ray complex so our primary goal was to get her to descend the first ray. We accomplished this by the following:

1. Manipulation in plantar and dorsiflexion of the first ray complex
2. Soft tissue work in the first intermetatarsal interval
3. Exercises of muscles to assist in descending the first ray including the following: extensor hallucis brevis, peroneus longus, flexor digitorum brevis
4. Pelvic stability work to improve the skill, endurance and strength of the gluteus medius complex as well as abdominal endurance work.

Your rehab program should change as the patient has more functional gains, tailoring it to the patient’s deficiencies.


Dr Ivo Waerlop, one of The Gait Guys

#invertedforefoot #forefootsupinatus #forefootvarus #pronation #forefoot #gaitanalysis

Internal tibial torsion puts pressure on the outside of the foot

IMG_7174.jpg
IMG_7175.jpg
IMG_7176.jpg

Take a look at these pictures. This is also a good reason to always look at the insoles. Take a good look. Can you see the increase printing on the lateral aspect of the right foot?

You’ll note that he has internal tibial torsion on the right side. This often presents with a forefoot supinatus and results in pressuring of the lateral column of the foot and an inability to descend the first ray. Note that the footbed on the right shows increased pressure of the lateral column and a lack of pressure under the head of the first.

Stand up and put the weight on the outside of your right foot. Can you feel how the toes on right side pressing more in an attempt to shift the center of gravity medially while it offloading the toes on the left foot? This is also represented in the foot beds.

Yet another great reason to not only look at the wear on the outside, but also on the inside of your clients/patients shoes.

Dr Ivo Waerlop, one of The Gait Guys

#footbeds #internaltibialtorsion #lateralfootpressure #insoles

A novel way to look at functional internal rotation of the hips

As clinicians (and coaches) we are often trying to figure out different ways to functionally assess internal rotation of the hips. How many times does the patient/client “appear“ to have appropriate internal rotation on the table only to find out that they don’t functionally and vice versa.

Take a look at it this gentleman who is a ski instructor. We are trying to simulate the standard side to side ski motion in a way that would be functionally appropriate. Keep in mind that he has bilateral internal tibial torsion and bilateral femoral retro torsion. When he began care at our office he had 5° external rotation on the right and about 8° external rotation on the left as his FULL AMOUNT OF INTERNAL ROTATION AVAILABLE to him bilaterally.

Treatment consisted largely of hip mobilization, Therapeutic exercises to emphasize internal rotation of the hips such as hip helicopters, airplanes and supine “chairs“ with internal rotation and adduction utilizing a ball between the knees; we also did acupuncture/needling of the hip capsules as well as anterior fibers of the gluteus medius and minimus. He now has about 5° internal rotation on the right now and a little less than 5 on the left. Note how the motion is clearly visualized in this video below.

Do you have other novel ways to test internal rotation of the hips functionally? Leave a comment or drop us a line and let us know

Feel like you want more? Join us this Wednesday evening on onlinece.com for Biomechanics 326: 6 MST

Dr Ivo Waerlop, one of The Gait Guys.

#functionaltesting #functionalmovement #hip #internalrotation #femoralretrotorsion #femoralretroversion #thegaitguys

Unilateral calcaneal valgus: what can it mean?

right calcaneal valgus

right calcaneal valgus

Take a good look at this picture and what do you see? Do you see the calcaneal valgus on the right side. What runs through your mind?

Possibilities for causing this condition, as well as the clinical implications are numerous.

The short list should include:

  • A shorter leg on the contralateral side: often times we will pronate more on the longer leg side to compensate for a short leg on the opposite

  • Increased rear foot and/or fore foot pronation on the valgus side. Laxity of the spring ligament or incompetency of the musculature which helps to maintain your arch (tibialis posterior, foot intrinsics, tibialis anterior to name a few) often causes more collapse on the effected side

  • A lack of available rearfoot eversion on the contralateral side. It may be that the increase calcaneovalgus is normal and the opposite side is more rigid.

  • If you were seeing this in the middle of the gait cycle it could be that that is their strategy to get around a loss of hip extension or ankle rocker

  • External tibial torsion on that side. Go ahead, stand up and spin your right foot into external rotation and keep your left foot with a normal progression angle. Can you see how your arch collapses to a greater degree on the side with the external torsion? Remember that pronation is dorsiflexion, eversion and abduction.

  • Internal tibial torsion on the contralateral side. Internal tibial torsion puts the foot into supination which makes it into more of a rigid lever rather than mobile adapter.

    And the list goes on…

    Next time you see a unilateral deformity like this, hopefully some of these things run through your mind and will help you to pinpoint where the problem actually is.

    Dr Ivo Waerlop, one of The Gait Guys

    #calcanealeversion #rearfootvalgus
    #lowerextremitydeformities

Obligate Pathomechanics

Much of what we see in gait analysis is secondary to the anatomical and physiological constraints exhibited by a patient. Take a look at this gentleman running. At first glance, you may be saying “yup, crossover gait, strengthen the gluteus medius complex“.

Now let’s talk about his physical exam. He has “windswept biomechanics“, With external tibial torsion on the right and internal table torsion on the left. There is no significant difference or increase in his Q angles bilaterally. He has a forefoot supinatus on the right side (I.e his forefoot is inverted with respect to his rear foot). He has limited plantar flexion of the first Ray complex on the right.

Now watch the video again with this in mind. Can you understand that if he’s unable to get his first ray to the ground he’s going to have any sort of hike your push off, in order to get it to the Ground he’ll need to mediately rotate his lower extremity and increase the valgus angle on that side. External tibial torsion (when you drop a plum line from the tibial tuberosity, it passes medial to a line passing to the long axis of the second metatarsal) compounds this. Stand up, rotate your right foot to the outside, keep it there and walk forward. Do you see how your knee has to go to the inside to push off your big toe?

Yes, he has a crossover gait but it is obligate and a direct function of his inability to descend the first ray, at least partly due to his forefoot supinatus and his external tibial torsion on the right.

Obligate pathomechanics. Coming to a patient in your office or one of the folks you are coaching soon.

We will be talking about foot types and pathomechanics tonite, October 16th, 2019, on our 3rd Wednesday’s teleseminar on onlinece.com: Biomechanics 314

5 pacific, 6 mountain, 7 central, 8 eastern

Dr Ivo Waerlop, one of The Gait Guys

3 clues that someone has internal tibial torsion

Watch this video a few times through and see what you notice. There are three clues that this patient has internal tibial torsion, can you find them?

He presented with right sided knee pain, medial aspect of the patella and medial joint line as well as tenderness over the medial joint line and pes anserine. Lower extremity musculature test strong and 5/5 save for his semi tendinosis on the right which tested 4/5.He has diminished endurance bilaterally in the external obliques

1. Note how his knees, right greater than left, fall outside the sagittal plane

2. Note the decreased progression angle of both feet during forward motion

3. Note how he toes off in supination, right greater than left.

This patient’s knee pain is coming from irritation of the pes anserine, particularly semitendinosus and his inability to recruit his abdominals sufficiently so, instead of the usual pattern of recruiting iliopsoas or rectus femoris, he chooses his sartorius, gracious and semi tendinosis.

Pay attention to how the new tracks, the progression angle as well as if they tow off in pronation, neutral, or supination in that can offer subtle clues to internal tibial torsion.

Dr Ivo Waerlop, one of The Gait Guys

#internaltibialtorsion #gaitanalysis #thegaitguys

https://vimeo.com/365342814

External tibial torsion and lower back pain

How can external tibial torsion and lower back pain possibly be related? Let’s take a quick look at the anatomy and see how.

knees neutral, note external rotation of the right foot and decreased progression angle

knees neutral, note external rotation of the right foot and decreased progression angle

Remember the external tibial torsion is present if we drop a plumbline from the tibial tuberosity and it passes between the first and second metatarsals or more medially. This increases the progression angle of the foot. This occurs due to “over rotation" of the lower extremity during development, often exceeding the 1.5 degrees per year of external rotation per year up to age 15 or occurring for a longer period of time, up to skeletal maturity. It can be uni or bilateral.

note when the foot is neutral, the knee points inward

note when the foot is neutral, the knee points inward

Often, due to the increased progression angle, people will try to "straighten their feet" (ie, decrees their progression angle) to move forward in the sagittal plane. This places the knees to the inside of the sagittal plane which causes medial knee fall and sometimes increased mid and forefoot pronation. This results in increased medial spin of the thigh bilaterally which increases the lumbar lordosis. Combine this with a sway back or anterior pelvic tilt and you have increased pressure on the lumbar facet joints. The facets are designed to carry approximately 20% of the load put in these circumstances are often called upon to carry the much more. This often results in facet imbrication and lower back pain. You can strengthen the abdomen all you like but if you do not change the attitude of the foot, a will often develop lower back pain, especially when the abs fatigue. Now think about if the deformity is unilateral; this will often cause asymmetrical rotation of the pelvis in a clockwise or counter clockwise direction.

So, what can you do you?

Since external tibial torsion is a "hard deformity", we can influence how the bone grows before skeletal maturity but after that will not change significantly with stretching or exercise.

  • You can teach them to walk with an increase in progression angle (ie “duck footed”). This will often keep the knee in the sagittal plane and can be surprisingly well tolerated

  • You can use a foot leveling orthotic or arch support to bolster the arch and change the mechanics of the foot, causing external rotation of the tibia which will often result in a decrease in progression angle in compensation while still keeping the knee in the sagittal plane

  • You could place a full length varus wedge in the shoe which, by inverting the foot, externally rotates the tibia which the person will often compensates for by decreasing there progression angle to keep the knee and the sagittal plane



Dr Ivo Waerlop, one of The Gait Guys



#tibialtorsion #lowbackpain #LBP #progressionangle





Sometimes it’s OK for “toes in“ squats

We hear from folks and also read on a lot of blogs and articles about whether your toes should be in or out for squats or other types of activities. The real answer is “it depends”.

What it depends on is the patient’s specific anatomy. That means we need to pay attention to knees and hips and things like femoral and tibial torsion‘s. It’s paramount to keep the knees in the sagittal plane, no matter what the lower extremity orientation is.

When somebody has external tibial torsion (i.e. when you drop a plumbline from there to view tuberosity it passes medial to the line between the second and third or second metatarsal) then having your feet and externally rotated position places the knees in sagittal plane. Having the patient go “toes in” with this type of anatomy will cause both knees to for medially and create patellofemoral tracking issues.

Likewise, like the patient in the video, (Yes, I know I say “external tibial torsion“ at the beginning of the video but the patient has internal tibial torsion as you will see from the remainder of the video) when somebody has internal tibial torsion (I.e. when you drop a plumbline from the tibial tuberosity it passes lateral to the second metatarsal or a line between the second and third metatarsal) you would need to point the toes inward to keep the knees in the sagittal plane as demonstrated in the video. You can also see in the video when her feet are placed “toes out“ they fall outside sagittal plane laterally which creates patellofemoral tracking issues like it was in this particular patient.

So, knees in or knees out? It depends…

Dr. Ivo Waerlop, one of The Gait Guys

#internaltibialtorsion #externaltibialtorsion #kneepain #kneesin #kneesout #squats #thegaitguys

External tibial torsion or femoral retrotorsion?

IMG_6727.JPG

This young lad presents to your office complaining of bilateral knee discomfort at the medial aspect, just below the patella, particularly when ascending and descending stairs and hills. You narrow it down to abnormal patellar tracking and 2 possibilities of who is driving the bus, but which is it?

Torsions of an extremity are said to exist when they measure two or more standard deviation‘s outside of normal. In external tibial torsion, the shaft of the tibia over rotates more than it’s 1.5° per year from zero at birth to greater than 19°. You are left with a foot that is has an increased progression angle and a center of gravity falls medial to the foot causing abnormal patellar tracking.

Femoral retro torsion is said to exist when the head of the femur over reduces from its 35° angle at birth to less than 8° resulting in severely limited internal rotation of the hips bilaterally. The lower extremity is often externally rotated to compensate.

An easy differential for the 2 is to drop a plumbline from the tibial tuberosity through the foot. This line normally passes through the second or between the second and third metatarsal‘s. If it falls medial to that it is eternal tibial torsion and lateral to that most likely internal tibial torsion or potentially a metatarsus varus or forefoot adductus.

IMG_6759.jpg


Another differential would be to perform “Craigs test” and measure how much internal and external rotation of the femur there is at the femoral acetabular articulation.

An easier way to put it is; those with femoral retrotorsion have less hip internal rotation and often increased amounts of external rotation; often they can’t even get past zero, never mind the requisite 4-6 degrees for normal gait. Those with increased internal rotation and diminished external rotation most likely have femoral antetorsion.

IMG_6726.jpg


So, Which is it? When his knees are Straightahead, his feet point out; when his feet are straightahead, his knees point inward. A plumbline from the tibial tuberosity passes medial to the second metatarsal. Looking at the pictures, you can see that he is external tibial torsion along with a sandal thong deformity that we talked about last week.

Dr Ivo Waerlop, one of The Gait Guys.

#externaltibialtorsion #outturnedfoot #increasedprogressionangle #kneepain #thegaitguys

When the big toes head...East? Whats the deal?

IMG_6721.JPG

What is this?

IMG_6722.JPG

A sandal gap deformity or hallux varus creates an expanded first interspace between the hallux and the rest of the toes. It is a likened to the gap caused by wearing a sandal but is actually a normal variant. It can occasionally be developmental. In the fetus, it can be a soft marker for other fetal anomalies such as Downs syndrome, an amniotic band or ectrodactyly. It’s considered benign, however in this individual could have been developmental.

IMG_6727.JPG

Notice how he has external tibial torsion (when his knees are pointing forward his feet point to the outside). External tibial torsion generally, because of the orientation of the foot, causes the center of gravity to fall medially thus the need for something to push and stabilize you more laterally, such as toes two through five abducting : )

Dr Ivo Waerlop, one of The Gait Guys

#halluxvarus #strangelookingfeet #hallux #thegaitguys #sandalgapdeformity





Barp EA, Temple EW, Hall JL, Smith HL. Treatment of Hallux Varus After Traumatic Adductor Hallucis Tendon Rupture. J Foot Ankle Surg. 2018 Mar - Apr;57(2):418-420.

https://radiopedia.org/articles/sandal-gap-deformity?lang=us

Munir U, Morgan S. Hallux Varus. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-.
2019 May 6.

Ryan PM, Johnston A, Gun BK. Post-traumatic dynamic hallux varus instability. J Clin Orthop Trauma. 2014 Jun;5(2):94-8. doi: 10.1016/j.jcot.2014.05.005. Epub 2014 Jun 15.

Sixth toe disease...That growth on the outside of your foot… Or on somebody’s foot is coming to see you…

IMG_6704.JPG

You know what we’re talking about. That extra growth on the lateral aspect of the foot that happens way too often and many of your clients. A Taylor’s bunion or sometimes referred to as a “bunionette”. 

What is the usual fix?

Usually in a ski boot or hiking boot, they blow out the lateral side of the shoe. This is usually not a good fix because most of these folks have internal tibial torsion and somewhat of a forefoot supinatus/varus.

IMG_6706.JPG
IMG_6707.JPG

The internal tibial torsion places the knee outside the saggital plane and an arch support without a forefoot valgus post will just push it further out, creating a conflict at the knee. The forefoot supinatus and/or varus places them on the outside of the foot as well. Remember, most of these folks are ALREADY on the outside of the foot and the foot wants to migrate laterally...so creating more space just means it migrates farther. Good thought, doesn’t work that way.

IMG_6710.JPG

So what did we do?

  • We created a valgus post for the forefoot (see picture above) tapering from lateral to medial and to help “push“ the distal aspect of the first ray down (because there was motion available that was not being used)

  • We gave him exercises to help descend the first ray like the extensor hallucis brevis exercise, toe waving as well as peroneus longus exercises

  • We gave him plenty of balance and coordination work

    Dr Ivo Waerlop, one of The Gait Guys




#6thtoe #internaltibialtorsion #forefootvarus # forefootsupinatus #gaitanalysis #thegaitguys







We’ve told you once and we will tell you again…

Folks with femoral retro torsion often experience lower back pain with twisting movements

This left handed hydrology engineer Presented to the office with an acute onset of lower back pain following “swinging a softball bat”. He comments that he always “hit it out of the park“ and hit “five home runs“ in the last game prior to his backs demise.

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

He presented antalgic with a pelvic shift to the left side, flexion of the lumbar spine with 0° extension and a complete loss of the lumbar lordosis. He could not extend his lumbar spine past 0° and was able to flex approximately 70. Lateral bending was approximately 20° on each side. Neurological exam negative. Physical exam revealed bilateral femoral retro torsion as seen above. Note above the loss of internal rotation at the hips of both legs, thus he has very limited internal rotation of the hips. Femoral retroversion means that the angle of the neck of the femur (also known as the femoral neck angle) is less than 8°, severely limiting internal rotation of the hip and often leading to CAM lesions.

Stand like you’re in a batters box and swing like you’re left handed. What do you notice? As you come through your swing your left hip externally rotates and your right hip must internally rotate. He has no internal rotation of the right hip and on a good day, the lumbar spine has about 5° of rotation with half of that occurring at the lumbosacral junction. Guess what? The facet joints are going to become compressed!

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

Now combine that with bilateral 4 foot adductus (see photos above). His foot is already in supination so it is a poor shock observer.

Go back to your “batters box“. Come through your swing left handed. What do you notice? The left foot goes into a greater amount of pronation in the right foot goes into a greater amount of supination. Do you think this is going to help the amount of internal rotation available to the hip?

When folks present with lower back pain due to twisting injuries, make sure to check for femoral torsions. They’re often present with internal tibial torsion, which is also present in this individual.

Remember a while ago we said “things occur in threes”. That goes for congenital abnormalities as well: in this patient: femoral retro torsion, internal tibial torsion and forefoot adductus.

What do we do? Treat locally to reduce inflammation and take steps to try to improve internal rotation of the hips bilaterally as well as having him externally rotate his right foot when he is in the batteries box to allow him to "create" more internal rotation of the right hip.

Dr Ivo Waerlop, one of The Gait Guys

#internalrotation #hipproblem #femoraltorsion #femoralversion #retroversion #retrotorsion #thegaitguys

Holy twisted tibias Batman! What is going here in this R sided knee pain patient?

Screen Shot 2019-06-10 at 12.28.38 PM.png

In the 1st picture note this patient is in a neutral posture. Note how far externally rotated her right foot is compared to the left. Note that when you drop a plumbline down from the tibial tuberosity it does not pass-through or between the second and third metatarsals. Also note the incident left short leg

Screen Shot 2019-06-10 at 12.28.56 PM.png

In the next picture both of the patients legs are fully externally rotated. Note the large disparity from right to left. Because of the limited extra rotation of the right hip this patient most likely has femoral retro torsion. This means that the angle of her femoral head is at a greater than 12° angle. We would normally expect approximately 40° of external Rotation. 4 to 6° is requisite for normal gait and supination.

Screen Shot 2019-06-10 at 12.28.47 PM.png

In the next picture the patients knees are fully internally rotated you can see that she has an excessive amount of internal rotation on the right compare to left, confirming her femoral antetorsion.

Screen Shot 2019-06-10 at 12.28.38 PM.png

When this patient puts her feet straight (last picture), her knees point to the inside causing the patello femoral dysfunction right greater than left. No wonder she has right-sided knee pain!

Because of the degree of external tibial torsion (14 to 21° considered normal), activity modification is imperative. A foot leveling orthotic with a modified UCB, also inverting the orthotic is helpful to bring her foot somewhat more to the midline (the orthotic pushes the knee further outside the sagittal plane and the patient internally rotate the need to compensate, thus giving a better alignment).


a note on tibial torsion. As the fetus matures, The tibia then rotates externally, and most newborns have an average of 0- 4° of internal tibial torsion. At birth, there should be little to no torsion of the tibia; the proximal and distal portions of the bone have little angular difference (see above: top). Postnatally, the tibia should twist outward (externally) a total of 15 degrees until adult values are reached between ages 8 and 10 years of 23° of external tibial torsion (range, 0° to 40°).

Wow, cool stuff, eh? Dr Ivo Waerlop, one of The Gait Guys

#tibialtorsion #tibialversion #kneepain #thegaitguys #gaitanalysis

Right-sided knee pain in a cyclist...due to his hip?

This 54-year-old pilot presented to our office with pain on the outside of his right knee while cycling with his wife who is currently training for the triple bypass. The discomfort comes on later in the ride and is largely lateral. He thought it may be due to a seat position so he raised his seat up but then shortly developed lower back discomfort. Lowered the seat back down and presents to the office today. He is currently on a 54 cm Pierello road bike with a straight top tube.

Physical exam revealed him to have moderately limited internal rotation of the right hip which was approximately 5 degrees external rotation; left side had approximately 5 degrees of internal rotation. There was no significant leg length discrepancy or internal tibial torsion. Musculature, save for the long extensors the toes tests 5/5 and strong. Hip extension is 0 degrees bilaterally 5 flexion approximately 120 degrees with tightness mostly in the iliopsoas and some in the rectus femoris. Knee stability tests are unremarkable. Some patellofemoral discomfort with compression on the right. Palpable tightness in the right IT band.

X-rays revealed degenerative changes at the inferior aspect of the right acetabulum with a small spur an osteophyte formation.

His seat height was set so that at bottom dead center with the seat tube he had a 30 degree bend in his knee. Seat fore and aft position placed the knee over pedal spindle behind central axis of the pedal. His pedal stroke, seen on the video, reveals moderate internal rotation and medial displacement of the knee on the right side.

So what is going on?

It’s all about how folks compensate. This gent has very limited internal rotation of the right hip. Due to the nature of cycling, he is REALLY TRYING to get his 1st MTP down to the pedal to generate power. This is not unusual among cyclists, which is why what you think should be happening in gait does not always transfer over to cycling. in doing so, he MUST rotate SOMETHING forward (in this case his pelvis) medially to create the internal rotation needed. From this scenario, you can see how the posturing would increase knee valve and offer a mechanical advantage to the vastus lateralis, causing patello femoral dysfunction and knee pain.

So we did we do?

  • Moved his seat forward so that a line drawn from between the patella and tibial tuberosity fell through the center axis of the pedal

  • Angled his cleat so that he is able to have a greater progression angle moving forward, bringing his knee more into the sagittal plane

  • Began working on the hip to increase internal rotation working on the gluteus minimus, vastus lateralis and biceps femoris as well as hip capsule and ilio/ischio/pubofemoral ligaments

Dr Ivo Waerlop, one of The Gait Guys

#kneepain #cycling #hipproblem #femoralretrotorsion #thegaitguys #torsion

Neuroma! Triple Threat....

Can you guess why this patient is developing a neuroma on the left foot, between the 3rd and 4th metatarsals?

IMG_6220.jpg
IMG_6218.jpg
IMG_6219.jpg

This gal presented to the office with pain in the left foot, in the area she points to as being between the 3rd and 4th metatarsals. It has been coming on over time and has become much worse this spring with hiking long distances, especially in narrower shoes. It is relieved by rest and made worse with activity.

Note the following:

  • She has an anatomical short leg on the left (tibial)

  • internal tibial torsion on the left

  • left forefoot adductus (see the post link below if you need a refresher)

Lets think about this.

The anatomical short leg on the left is causing this foot to remain in relative supination compared the right and causes her to bear weight laterally on the foot.

The internal tibial torsion has a similar effect, decreasing the progression angle and again causing her to bear weight laterally on the foot, compressing the metatarsals together.

We have discussed forefoot adductus before here on the blog. Again, because of the metararsal varus angle, it alters the forces traveling through the foot, pushing the metatarsals together and irritating the nerve root sheath, causing hypertrophy of the epineurium and the beginnings of a neuroma.

In this patients case, these things are additive, causing what I like to a call the “triple threat”.

So, what do we do?

  • give her shoes/sandals with a wider toe box

  • work on foot mobility, especially in descending the 1st ray on the left

  • work on foot intrinsic strength, particularly the long extensors

  • treat the area of inflammation with acupuncture

Dr Ivo Waerlop, one of The Gait Guys

#forefootadductus #metatarsusadductus #neuroma #gaitanalysis #thegaitguys #internaltibialtorsion

3 things

Its subtle, but hopefully you see these 3 things in this video.

I just LOVE the slow motion feature on my iPhone. It save me from having to drag the video into Quicktime, slow it down and rerecord it.

This gal has a healing left plantar plate lesion under the 2nd and 3rd mets. She has an anatomical leg length deficiency, short on the left, and bilateral internal tibial torsion, with no significant femoral version. Yes, there are plenty of other salient details, but this sketch will help.

  1. 1st if all, do you see how the pelvis on her left dips WAY more when she lands on the right? There is a small amount of coronal plane shift to the right as well. This often happens in gluteus medius insufficiency on the stance phase leg (right in this case), or quadratus lumborum (QL) deficiency on the swing phase leg (left in this case) or both. Yes, there are other things that can cause this and the list is numerous, but lets stick to these 2 for now. In this case it was her left QL driving the bus.

  2. Watch the left and right forefeet. can you see how she strikes more inverted on the left? this is a common finding, as the body often (but not always) tries to supinate the shorter extremity (dorsiflexion, eversion and adduction, remember?) in an attempt to “lengthen” it. Yes, there is usually anterior pelvic tilt accompanying it on the side, because I knew you were going to ask : )

  3. Look how her knees are OUTSIDE the saggital plane and remain there in her running stride. This is commonly seen in folks with internal tibial torsion and is one of the reasons that in our opinion, these folks should not be put medially posted, torsionally rigid, motion control shoes as this usually drive the knees FURTHER outside the saggital plane and can macerate the meniscus.

Yep, lots more we could talk about on this video, but in my opinion, 3 is a good number.

Dr Ivo Waerlop, one of The Gait Guys

#thegaitguys #gaitanalysis #footpain #gaitproblem #internaltibialtorsion #quadratuslumborum #footstrike

https://vimeo.com/329212767

Things seem to come in 3's...

Things tend to occur in threes. This includes congenital abnormalities. Take a look this gentleman who came in to see us with lower back pain.

Highlights with pictures below:

  • bilateral femoral retrotorsion

  • bilateral internal tibial torsion

  • forefoot (metatarsus) adductus

So why LBP? Our theory is the lack of internal rotation of the lower extremities forces that motion to occur somewhere; the next mobile area just north is the lumbar spine, where there is limited rotation available, usually about 5 degrees.

Dr Ivo Waerlop, one of The Gait Guys.

#tibialtorsion #femoraltorsion #femoralretrotorsion #lowbackpain #thegaitguys #gaitproblem

this is his left hip in full internal rotation. note that he does go past zero.

this is his left hip in full internal rotation. note that he does go past zero.

full internal rotation of the right hip; note he does not go past zero

full internal rotation of the right hip; note he does not go past zero

note the internal tibial torsion. a line dropped from the tibial tuberosity should go through the 2nd metatarsal or between the 2nd and 3rd.

note the internal tibial torsion. a line dropped from the tibial tuberosity should go through the 2nd metatarsal or between the 2nd and 3rd.

ditto for the keft

ditto for the keft

a line bisecting the calcaneus should pass between the 2nd and 3rd metatarsal shafts. If talar tosion was present, the rearfoot would appear more adducted

a line bisecting the calcaneus should pass between the 2nd and 3rd metatarsal shafts. If talar tosion was present, the rearfoot would appear more adducted

less adductus but still present

less adductus but still present

look at that long flexor response in compensation. What can you say about the quadratus plantae? NO bueno…

look at that long flexor response in compensation. What can you say about the quadratus plantae? NO bueno…

Ditto!

Ditto!

Low Back Pain? Check for Femoral Retrotorsion on the Same Side

note the right sided leg length discrepancy

note the right sided leg length discrepancy

right tibia is anatomically shorter

right tibia is anatomically shorter

more internal rotation available on the left side at the hip. Note the internal tibial torsion as well

more internal rotation available on the left side at the hip. Note the internal tibial torsion as well

very little internal rotation available at the right hip

very little internal rotation available at the right hip

This right handed concrete worker presented to our office with right-sided lower back pain. He was lifting a bag of concrete moving from left to right which she estimates weighing between 60 and 80 pounds. He did this repetitively throughout the day and subsequently developed right sided lower back pain. The pain is in the suprailiac region and is described as dull, achey. Is exacerbated by right rotation and right lateral bending.

His exam found him to have a right sided anatomical leg length discrepancy, tibial left (see above) and femoral retro torsion on the right with no internal rotation of the hip past 0 degrees (see picture of full internal rotation of the right hip and cmpare it with the left); left side had approximately 10 degrees internal rotation. He also has bilateral internal tibial torsion, R > L. Palpation findings revealed tightness in the lumbar multifidus and quadratus lumborum with a loss of lateral bending to the right at L2 through L4 and a loss of flexion about the right sacroiliac joint. Lower extremity reflexes were 2+ with bilateral symmetry; sensation to vibration was intact at the distal phalanges; motor strength was strong and graded as 5/5.

Think about the implications of his right-sided leg length discrepancy first. This places his foot and a relative supinated posture compared to the left. Remember that supination is plantar flexion, inversion and adduction.

His femoral retro torsion on the right limits his internal rotation at the hip. When his foot planted with a diminished progression angle secondary to the internal tibial torsion, and he has to rotate from left to right, very little, if any motion, can occur at the right hip and therefore must occur in the lumbar spine. Remember the lumbar spine has very limited range of motion begin with with most of that occurring at the L5-S1 junction, depending upon its anatomy. Now superimpose a long lever load and rotary force. Back pain!

We instructed him on proper lifting technique and also talked about keeping the shoulders and hips in the same plane when lifting or load. If he does need to lift a load and spin unilateral on his right lower extremity, we asked him to externally rotate the right lower extremity. He was treated with manipulation and neuromuscular acupuncture.

If you have somebody with unilateral lower back pain, think about the implications if they have any femoral torsion or version present

Dr. Ivo Waerlop, one of The Gait Guys.

#lowbackpain #LBP #femoralretrotorsion #femoral #torsion #gait #gaitanalysis #thegaituys