tumblr_ni6lv4HU1v1qhko2so2_r1_250.png
tumblr_ni6lv4HU1v1qhko2so1_500.jpg

Riding the inside edge of the sandal. Mystery hunting with Dr. Allen.

You can see it in the photo above, the heel is a third of the way off the sandal. (there are 2 photos provided today, find the arrow and tab to see both)

You either have it or have seen it. It is frustrating as hell if you have it. Your heel rides on only half of your flip flop or summer sandals. You do not notice it in shoes, only in sandals, typically ones without a back or back strap.  This is because the heel has no controlling factors to keep it confined on the rear of the  sandal sole. But there is a reason this happens to some, but not everyone. It is best you read on, this isn’t as simple as it might seem. 

These clients have restricted ankle rocker (dorsiflexion), restricted hip extension and/or adductor twist (if your reference is the direction the heel is moving towards). I could even make a biomechanical case that a hallux limitus could result in the same scenario. So what happens is that as the heel lifts and adducts it does not rise directly vertically off the sandal, it spins off medially from the “adductor twist” event. This event is largely from a torque effect on the limb from the impaired sagittal mechanics as described above, manifesting  at the moment of premature heel rise resulting in an slightly externally rotating limb (adducting heel). The sandal eventually departs the ground after the heel has risen, but the sandal will rise posturing slightly more laterally ( you can clearly see this on the swing leg foot in the air, the sandal remains laterally postured). Thus, on the very next step, the sandal is not entirely reoriented with its rear foot under the heel, and the event repeats itself. The sandal is slightly more lateral at the rear foot, but to the wearer, we believe it is our heel that is more medial because that is the way it appears on the rear of the sandal or flip flop.  Optical illusion, kind of… . . a resultant biomechanical illusion is more like it.

You will also see this one all over the map during the winter months in teenagers who swear by their Uggs and other similar footwear, as you can see in the 2nd photo above. This is not an Ugg or flip flop problem though, this is often a biomechanical foot challenge that is not met by a supportive heel counter and may be a product of excessive rear foot eversion as well.  This does not translate to a “stable” enough shoe or boot, that is not what this is about. This is about a rearfoot that moves to its biomechanical happy place as a result of poor or unclean limb and foot biomechanics and because the foot wear does not have a firm stable and controlling heel counter.  The heel counter has several functions, it grabs the heel during heel rise so that the shoe goes with the foot, it give the everting rearfoot/heel something to press against, and as we have suggested today, it helps to keep the rearfoot centered over the shoe platform.  To be clear however, the necessary overuse and gripping of the long toe flexors to keep flip flops and backless sandals on our feet during the late stance and swing phases of gait, clearly magnifies these biomechanical aberrations that bring on the “half heel on, half heel off” syndrome.

There you have it. Another solution to a mystery in life that plagues millions of folks. 

Dr. Shawn Allen, mystery hunter, and one of the gait guys.

More proof for the Cross Over Gait for the non-believers and debaters.

For those of you who have been with us for a few years, you are no stranger to our articles and videos on the web for piecing together many aspects of the CROSS OVER GAIT in a manner more comprehensive and more clear.  If you are not familiar with our work on this, please click here.

Today we add a little more “proof to our pudding”.

“Changing step width alters lower extremity biomechanics during running.” Brindle et al.
http://www.gaitposture.com/article/S0966-6362(13)00291-9/abstract

  • Step width influences frontal plane biomechanics of all body parts
  • Changes in step width affects arm swing symmetry and often creates arm abduction
  • Hip and knee biomechanics change from their normal predicted path and mechanics
  • Hip adduction, rearfoot eversion and internal tibial spin decrease as step width increases
  • Knee adduction/valgus stress decreases as step width increased.
  • Increased step width improves cephalad stacking of all lower extremity joints
  • The swing limb is a hinging pendulum. Striving for a level pelvis and normal step width promotes a normal sagittal pendulum path and improves the likelihood of a recurring sagittal pendulum swing for the opposite leg. 

As Brinkle et al. say in their paper, “step width is a spatiotemporal parameter that may influence lower extremity biomechanics at the hip and knee joint.”  We would argue that it is even more far reaching than the hip and knee. You have likely learned here at the Gait Guys that arm swing is heavily predicated on the dynamics of contralateral leg function and positioning.

The above video shows a classic cross over gait. The limbs can be seen crossing over the midline thus guaranteeing that the pendulum is moving through an arc and not along a straighter progression. This adduction of the limb virtually guarantees that the foot is striking greater on the lateral heel and forefoot than it should, that the rear foot is going to move through eversion with greater speed and force and internal tibial spin and arch control will need to be controlled better.  And if they are not controlled better, pathology may eventually occur.  Do you want any of this to occur at an accelerated rate as occurs in running ? One doesn’t need to just heel strike to suffer these problems, midfoot strike will still see them if the cross over occurs.

Shawn and Ivo, the Cross Over Guys.

Foot “Roll Out” at Toe Off : Do you do this ? And if so, why do YOU do it ?

As we always say, “what you see in someone’s gait is often not the problem, rather a compensatory strategy around the problem”.


What do you see in this case ? We would like to draw your attention at this time to the transition from midfoot stance to toe off on the right foot.  You should watch both feet and note that the right foot tips outward (inverts) as toe off progresses.
What could cause this ?  It is certainly not normal.  Remember, it is highly likely it is not the problem, that something is driving it there or something is not working correctly to drive this client to normal big toe propulsive toe off. Now, there are many other issues in this case, some of which  you can see and many of which you cannot, but do not get distracted here, our point is to talk about that aberrant Right toe off into inversion which prevents the optimal hallux (big toe) toe off. 
A clinical exam will give many answers to joint ranges and what muscles are strong and which are weak and inhibited.  Without the clinical exam and this information about the entire kinetic linkage there is no way to know what is wrong. This thinking should awaken shoe stores when prescribing shoes off of watching clients run or walk on a treadmill.  There is so much to it beyond what one sees. 
So what could be causing this foot to continue its supinatory events from heel strike all the way through lateral toe off ?
The foot could be:
- a rigid high arched cavus foot
- perhaps pronation through the midfoot and forefoot is painful (metatarsal stress pain, painful sesamoiditis, plantar fascitis) so it is an avoidance strategy possibly
- a common one with this gait presentation is perhaps there is a hallux limitus/rigidus (turf toe), painful or non-painful
- weak peronei and/or lateral gastrocsoleus thus failing to drive the foot medially to the big toe during the midstance-to-forefoot loading transition
- contractured medial gastrocsoleus complex (maybe an old achilles tear or reconstruction ?)
-rigid rearfoot deformity not allowing the calcaneus to perform its natural evertion during early stance phases thus maintaining lateral foot pressures the entire time
- presence of a rigid forefoot valgus
- avoidance of the detrimental medial pressures from a forefoot varus

 These and many other issues could be the reason for the aberrant toe off pattern.  This is not an exhaustive list but it should get your brain humming and asking some harder questions, such as (sorry, we have to say it again), “is what you see the problem, or a compensatory strategy to get around the problem ?”

We know you have busy days but we appreciate your time watching our videos and embracing something we are both passionate about.
We are The Gait Guys

Dr. Shawn Allen & Dr. Ivo Waerlop