So you think you are tough ? This guy was tough. A marathon a day for over 120 days…..on one leg, with cancer.
Today, a Tribute to Terry Fox. Every year we post a reminder of perhaps one of the toughest dudes who ever lived.
Today , this day, 1981 Terry Fox died.
Half of The Gait Guys grew up in Canada. We were barely a teenager when Terry began his plight. His mission, 26 miles a day, every day, until he had crossed the expanse of Canada. He made it an amazing 120+ days in a row, 3339 miles, before his cancer returned. The whole country stood cheering watching him do something no mortal man would attempt, let along with one leg, and cancer. Today we pay a tribute to this rockstar.

Rest in Peace Terry.

Cheating the Ankle Rocker: a review post of Anothony Bourdain.

Today seems like the perfect day to link you to this old blog post because it parlays beautifully with yesterdays video and blog article.

Once again, we present “The Chef: Anthony Bourdain, Cheating the ankle rocker”. We hope he won’t get upset we snipped this little clip from his old show No Reservations. He is a smart reasonable guy, we think that if he knew he was helping others that he would say “go for it”.

Here is a rewind of our blog post:

http://thegaitguys.tumblr.com/post/21713480315/the-chef-another-abnormal-gait-pattern-in

PS: we follow Bourdain on Twitter……one prolific guy and great TV shows too. Did you see his recent show (on CNN) on the Congo? We are huge fans of The Chef ! One guy we would someday definitely love to meet and share a beer with. Even if he has some impaired gait mechanics. But hey, who doesn’t !?

The Gait Guys

The Power of Observation: Part 2

Let’s take a closer look at yesterdays post and the findings. If you are just picking up here, the post will be more meaningful if you go back and read it. 


The following are some explanations for what you were seeing:

torso lean to left during stance phase on L?

if he has a L short leg, he will need to clear right leg on swing phase. We have spoken of strategies around a short leg in another post. This gentleman employs 2 of the 5 strategies; torso lean is one of them

increased progression angle of both feet?

Remember he has femoral retroversion. You may have read about retrotorsion here. He has limited internal rotation o both thighs and must create the requisite 4-6 degrees necessary to walk. He does this by spinning his foot out (rotating externally).

decreased arm swing on L?

This is most likely cortical, as he seems to have decreased proprioception on both legs during 1 leg standing. Proprioception feeds to the cerebellum, which in turn fires axial extensors through connections with the vestibular system. Diminished input can lead to flexor dominance (and extensors not firing). Note the longer stride forward on the right leg compared to the left with less hip extension (yes, we know, a side view would be helpful here).

circumduction of right leg?

This is the 2nd strategy for getting around that L short leg.

clenched fist on L?(esp when standing on either leg)

see the decreased arm swing section. This is a subtle sign of flexor dominance, which appears to be greater on the right.

body lean to R during L leg standing?

This is again to compensate for the L short leg. He has very mild weakness of the left hip abductors as well, more when moving or using them in a synergistic fashion (ie functional weakness) than to manual testing.

Well, what do you think? Now you can see how important the subtle is and that gait analysis may complex than many think.

We are and we remain, the Geeky Guru’s of Gait: The Gait Guys

OK, quiz time. The Powers of Observation.

Perhaps you have been following us for a while, perhaps you are just finding us for the 1st time. Here is some back ground on this footage. Let’s test you observation skills.

Watch this gait clip a few times and come back here to read on.

This triathlete presented with low chronic low back pain of about 1 years duration. The   pain gets worse as the day goes on; it is best in the early am. Running and biking do not alter its intensity or character and swimming makes it worse. Rest and analgesics provide only temporary relief.

Physical exam findings include limited internal rotation of both hips (zero); a left anatomical short leg (tibial and femoral, 5mm total); diminished proprioception with 1 leg standing (<30 seconds). MRI reveals fatty infiltration of the lumbar spinal paraspinals and fibrotic changes within the musculature; degenerative changes in the L4 and L5 lumbar facet joints, degeneration of the L5-S1, L3-L4 and L2-L3 lumbar discs.

Now watch his gait again and come back here for more.

Did you see the following?

  • torso lean to left during stance phase on L?
  • increased progression angle of both feet?
  • decreased arm swing on L?
  • circumduction of right leg?
  • clenched fist on L?(esp when standing on either leg)
  • body lean to R during L leg standing?


How did you do? If you didn’t see all those things, then you are missing pieces of the puzzle. Remember, often what you see is not what is wrong, but the compensation

The powers of observation of the subtle make the difference between good results and great ones.

Try some of these tips.

  • break down the gait into smaller parts by watching one body part at a time: right leg, left leg, right arm, left arm, etc
  • watch for shifts in body weight in the coronal plane (laterally) and saggital plane (forward/backward) as weight transfers from one leg to another
  • watch for torso rotation (watch his shoulders. Did you notice he brings his torso more forward on the left than right when walking toward us?)


We are (and have been) here to help you be a better observer and a better clinician, coach, athlete, sales person, etc. If you haven’t already, join us here for some insightful posts each week; for our weekly (almost) PODcast on iTunes; follow us on Twitteror on Facebook: The Gait Guys

Podcast 34: Chimp feet, Marathon Monks & Statin drugs

podcast link:

http://thegaitguys.libsyn.com/podcast-34-chimp-feet-marathon-monks-statin-drugs

iTunes link:

http://thegaitguys.libsyn.com/podcast-33-heart-beats-toe-walking-crawling

Gait Guys online /download store:

http://store.payloadz.com/results/results.aspx?m=80204

other web based Gait Guys lectures:

www.onlinece.com   type in Dr. Waerlop or Dr. Allen  Biomechanics

Today’s show notes:

 1.Did Rock Climbing Help Us Start Walking Upright?   By Shaunacy Ferro A new theory suggests humans became bipedal so that we could scramble up rugged terrain.
http://www.popsci.com/science/article/2013-05/did-rock-climbing-help-us-start-walking-upright?src=SOC&dom=tw


2. http://en.wikipedia.org/wiki/Kaih%C5%8Dgy%C5%8D

The Running Marathon monks of Mt. Hiei

The Kaihōgyō is a set of the ascetic physical endurance trainings for which the Japanese “marathon monks” of Mt. Hiei are known. These Japanese monks are from the Shugendō and the Tendai school of Buddhism, a denomination brought to Japan by the monk Saichō in 806 from China.


3. http://www.runnersworld.com/general-interest/do-you-have-chimpanzee-feet

Do you have Chimpanzee feet ?

About 8% of people tested by Boston University researchers had midfoot flexibility of the sort that apes use to climb trees, according to a study published in the American Journal of Physical Anthropolgy.

4. Statins Linked With Risk of Musculoskeletal Injury

Michael O'Riordan

http://www.medscape.com/viewarticle/805369?src=wnl_edit_medn_wir&spon=34

http://archinte.jamanetwork.com/article.aspx?articleid=1691918

Can Statins Cut the Benefits of Exercise?

By GRETCHEN REYNOLDS

http://well.blogs.nytimes.com/2013/05/22/can-statins-curb-the-benefits-of-exercise/

http://www.ncbi.nlm.nih.gov/pubmed/23583255

5. Shoes: The Primal Professional.com

http://theprimalprofessional.com/products/pre-order-the-primal-professional

http://well.bradrourke.com/2013/05/my-new-primal-dress-shoes/

6. Hallux valgus and lesser toe deformities are highly heritable in adult men and women: The Framingham foot study

Marian T. Hannan
http://onlinelibrary.wiley.com/doi/10.1002/acr.22040/abstract;jsessionid=99975015C3EE5678E6351273C2CD42A0.d02t04

7. Forefoot strikers exhibit lower running-induced knee loading than rearfoot strikers

Kulmala, Juha-Pekka; Avela, Janne; Pasanen, Kati; Parkkari, Jari

http://journals.lww.com/acsm-msse/Abstract/publishahead/Forefoot_strikers_exhibit_lower_running_induced.98324.aspx

8. Why Where You Land On Your Foot Isn’t That Important

http://www.kinetic-revolution.com/why-where-you-land-on-your-foot-isnt-that-important/

If you do not undestand limb torsions, you are quite possibly screwing up your runners.

You must understand all 3 of these (see below) to understand funky gaits that you see, and to clean up your physical exams with clients. If you are making gait or running form recommendations on this stuff without understanding Torsions you are quite possibly making very bad form recommendations and could be putting forces and torque into foot, ankle, knee or hip that are detrimental. Trust us. We know what we are talking about.

In light of our teleseminar on Chirocredit.com last night we will re-run the 5 Part series on limb Torsions and Versions.

Remember, there are three areas this needs to be considered in:

1. torsion of the talus

2. tibial torsion

3. femoral torsion

here is the link to our old post on this topic, part 1a

http://thegaitguys.tumblr.com/post/30799942620/torsions-this-gentleman-has-2-excellent-examples

Shawn and Ivo

The “Top-End” Peroneal Walk Foot Skill: Another Restoration Foot Trick by The Gait Guys

Have stability problems in your ankles ? Lots of people do !
Here is a brief video of a simple, but difficult, functional exercise to strengthen the peroneal muscles in full plantar flexion (we will give more detailed tricks and techniques away on the Foot-Ankle DVD exercise series, once we get some time to get to it !). The key here is to not let the heel drop during single fore-foot loading and to keep the ankle pressing inwards as if to try and touch the ankles together medially …..if you feel the heel drop on the single foot loaded side (or you can feel the calf is weaker or if you feel strain to keep the inward press of the ankle) then it might be more than the peronei, it could be the combined peroneal-gastrocsoleus complex. The key to the assessment and home work is to make sure that the heel always stays in “top-end” heel rise plantarflexion. But you have to strongly consider the peronei just as seriously. Studies show that even single event sprains let alone chronic ankle sprains create serious incompetence of the peronei. Most people do not notice this because they never assess the ability to hold the foot in full heel rise (plantarflexion) while creating a valgus load (created by the peronei mostly, a less amount from the lateral calf) at the ankle. This is why repetitive sprains occur. The true key to recovery is to be able to walk on the foot in this heel-up “top-end” position while in ankle eversion (ankles squeezed together) as you see in this video. This is something we do with all of our basketball and jumping sports athletes and it is critical in our dancers of all kinds. And if they cannot do the walking skill or if they feel weakness then we keep it static and put a densely rolled towel or a small air filled ball between the ankles and have them do slow calf raises and descents while squeezing the towel-ball with all their ability. This will create a nice burn in the peroneal muscles after just a few repetitions. The user will also quickly become acutely aware of their old tendency to roll to the outside of the foot and ankle because of this lack of awareness and strength of those laterally placed ankle evertors - the peronei. It is critical to note that If you return to the ground from a jump and cannot FIRST load the forefoot squarely and then, and only then, control the rate of ankle inversion and neutral heel drop (ankle dorsiflexion) then you should not be shocked at chronic repetitive ankle sprains. Remember, the metatarsals and toes are shorter as we move away from the big toe, so there is already a huge risk and tendency to roll to the outside of the foot through ankle inversion. Hence why ankle sprains are so common. We call this “top end” peroneal strength but for it to be effectively implemented one must have sufficient top end calf strength as well, you cannot have sound loading mechanics without both.
It is not as easy as it appears in this video. We encourage you to give this a try and we bet that 1 out of every 2 people who try it will notice “top end” weakness felt either in the peronei and/or in the calf via inability to keep the heel in “top-end”. Oh, and do not think that you can simply correct this by more calf work, not if the peronei are involved, which they usually are.
One more trick by The Gait Guys………bet you cannot wait for the foot dvd huh !? Ya, it has only been on our list for 3 years now !
 We talk more about this kind of stuff on our National Shoe Fit Certification program.
Email us if you are interested thegaitguys@gmail.com

tumblr_moimskecPV1qhko2so1_1280.jpg
tumblr_moimskecPV1qhko2so2_1280.jpg

A Window into the Glutes: Anatomy lesson for the day.

 

A rather literal statement for a rather literal picture. Taken from the Human Body Exhibit at the Denver Museum of Science, this picture offers us a glimpse into, or in this case through, one of our favorite muscle groups. This group that we see here, is probably our second favorite group. They are often called the “deep six” and are the deep hip external rotators. If you count, you will notice there are only five….one remains unseen the obturator internus. More on that later.

 

See the linear white lines on the right of the window? That’ s the two portions of the sciatic nerve. Notice how it runs under the muscle at the top and over the others? The muscle it runs under is the famous piriformis. When this muscle gets tight, it can impinge the sciatic nerve, causing pain down the leg (known as sciatica). This represents one of many causes of pain radiating down the leg.

 

The next muscle south is the gemelli superior, then the obturator externus, gemelli inferior, and quadratus femoris. The sixth of the deep six is the obturator internus, which runs from the inside of the pelvis on the obtrobturator foramen (those huge “eyes” you see in an x ray when looking at a pelvis from the front) to a similar place on the femur.

 

A few observations you should make.

 

  • when someone chews your butt off, or chews you a new one, this picture gives it a whole new meaning

  • the sciatic nerve runs under the piriformis
  • The top (superior) five muscles have a tendonous insertion to the femur that you can see as a whitish area on the left

  • the last (or most inferior muscle) has a muscular insertion to the femur (which is a reddish area on the left)
  • the positioning of these muscles allows them to be external rotators of the femur when the foot is in the air

  • when the foot is planted, they become external rotators of the pelvis or can act to slow internal rotation of the femur during stance phase
  • as you proceed caudally, the muscles become stronger adductors of the thigh

 

We will see this post as a reference for some future posts on this most fascinating muscle groups. Until then, study up!

 

The Gait Guys. Uber Foot Geeks. Join us in our mission to educate the world on the importance of understanding human motion and its impact on translating us forward in the gravitational plane.

 

 

all material copyright 2013 The Gait Guys/ The Homunculus Group. All rights reserved

Lombard's Paradox: A unique look at the cooperation of the quadriceps and hamstrings

Lombard’s Paradox

 In searching our personal archives for neat stuff we came across an oldie but a goodie. We posted this one on the blog for the first time in July 2011 so it was time to revisit it here on the blogs “Rerun Fridays”. This is one to certainly make your head spin. We do not even know where this came from and how much was our original material and how much was someone  else’s.  If you can find the reference we would love to give it credit.  We do now that we added some stuff to this but we don’t even know what parts were ours !  Regardless, there is a brain twister here worth juggling in your heads.  Lets start with this thought……..

When you are sitting the rectus femoris (a quad muscle) is “theoretically” shortened because the hip is in flexion. It crosses the bent knee in the front at it blends with the patellar tendon, thus it is “theoretically” lengthened at the knee.  When we stand up, the hip extends and the knee extends, making the R. Femoris “theoretically” lengthen at the hip and shorten at the knee.  This, it bodes the question…….did the R. Femoris even change length at all ? And the hamstrings kind of go through the same phenomenon. It is part of the  uniqueness of “two joint” muscles.   Now, onto Lombard’s paradox with more in depth thought on this topic.

Warren Plimpton Lombard (1855-1939) sought to explain why the quadriceps and hamstring muscles contracted simultaneously during the sit-to-stand motion.  He noted that the rectus femoris and the hamstrings are antagonistic, and this coactivation is known as Lombard’s paradox.

The paradox is classically explained by noting the relative moment arms of the hamstrings and rectus femoris at either the hip or the knee, and their effects on the magnitude of the moments produced by either muscle group at each of the two joints.

By virtue of the fact that muscles cannot develop different amounts of force in their different parts, the paradox develops.  The hamstrings cannot selectively extend the hip without imparting an equal force at the knee. Thus, the only way for hip extension and knee extension to occur simultaneously in the act of standing (or eccentrically in the act of sitting) is for the net moment to be an extensor moment at both the hip and knee joints. Lombard suggested three necessary conditions for such paradoxical co-contraction:

  • the lever arm of the muscle must be greater at its extensor end
  • a two-joint muscle must exist with opposite function
  • the muscle must have sufficient leverage so as to use the passive tendon properties of the other muscle

In 1989, Felix Zajac & co-workers pointed out that the role of muscles, particularly two-joint muscles, was much more complex than has traditionally been assumed. For example, in certain situations, the gastrocnemius could act as a knee extensor. It is clear now that the direction in which a joint is accelerated depends on the dynamic state of all body segments, making it difficult to predict the effect of an individual muscle contraction without extensive and accurate biomechanical models (Zajac et al, 2003).

 In fact, back to the gastrocnemius another 2+ joint muscle (crosses knee, mortise and subtalar joints), we all typically think of it as a “push off” muscle.  It causes the heel to rise and accelerates push off in gait and running. But, when the foot is fixed on the ground the insertion is more stable and thus the contraction, because the origin is above the posterior joint line, can pull the femoral condyles into a posterior shear vector. It thus, like the hamstrings, needs to be adequately trained in a ACL or post-operative ACL, deficient knee to help reduce the anterior shear of normal joint loading. It is vital to note, that when ankle rocker is less than 90  degrees (less than 90 degrees of ankle dorsiflexion is available), knee hyperextension is a viable strategy to progress forward in the sagittal plane.  But in this scenarios, the posterior shear capabilites of the gastrocnemius are brought to the front of the line as a frequent strategy.  And not a good one for the menisci we should mention.

Andrews J G (1982)  On the relationship between resultant joint torques and muscular activity  Med Sci Sports Exerc  14: 361-367.

Andrews J G (1985)  A general method for determining the functional role of a muscle  J Biomech Eng  107: 348-353.

Bobbert MF, van Soest AJ (2000) Two-joint muscles offer the solution - but what was the problem? Motor Control 4: 48-52 & 97-116.

Gregor, R.J., Cavanagh, P.R., & LaFortune, M. (1985). Knee flexor moments during propulsion in cycling—a creative solution to Lombard’s Paradox. Journal of Biomechanics, 18, 307-16 .

Ingen-Schenau GJv (1989) From rotation to translation: constraints on multi-joint movement and the unique action of bi-articular muscles. Hum. Mov. Sci. 8:301-37.

Lombard, W.P., & Abbott, F.M. (1907). The mechanical effects produced by the contraction of individual muscles of the thigh of the frog. American Journal of Physiology, 20, 1-60.

Mansour J M & Pereira J M (1987)  Quantitative functional anatomy of the lower limb with application to human gait  J Biomech  20: 51-58.

Park S, Krebs DE, Mann RW (1999) Hip muscle co-contraction: evidence from concurrent in vivo pressure measurement and force estimation. Gait & Posture 10: 211-222.

Rasch, P.J., & Burke, R.K. (1978). Kinesiology and applied anatomy. (6th ed.). Philadelphia: Lea & Febiger.

Visser JJ, Hoogkamer JE, Bobbert MF & Huijing PA (1990) Length and Moment Arm of Human Leg Muscles as a Function of Knee and Hip Angles. Eur. J Appl Physiol 61: 453-460.

Zajac FE & Gordon MF (1989) Determining muscle’s force and action in multi-articular movement  Exerc Sport Sci Revs  17: 187-230.

Zajac FE, Neptune RR, Kautz SA (2003) Biomechanics and muscle coordination of human walking - Part II: Lessons from
dynamical simulations and clinical implications, Gait & Posure 17 (1): 1-17.

Stop Doing Kegels: Real Pelvic Floor Advice For Women (and Men)

This web article just came out today and we felt it was important to share. 

Nicole Crawford did a nice job with the article (LINK) and you need to read it.  The pelvic floor is a complicated place. There needs to be balanced muscular contraction and there has to be neutral pelvis and lumbar spine.  We have to agree with her comment:

A Kegel attempts to strengthen the pelvic floor, but it really only continues to pull the sacrum inward promoting even more weakness, and more PF (pelvic floor) gripping. The muscles that balance out the anterior pull on the sacrum are the glutes. A lack of glutes (having no butt) is what makes this group so much more susceptible to pelvic floor disorder (PFD). Zero lumbar curvature (missing the little curve at the small of the back) is the most telling sign that the pelvic floor is beginning to weaken. An easier way to say this is: Weak glutes + too many Kegels = PFD.

 There are too many people who have a shallow lumbar spine lordotic curve. These folks often hold the pelvis as neutrally as they can by keeping a constant squeeze of the glutes to “push” the pelvis “tipped up or levelled up” in the front when in fact the lower abdominals should “hold” them up in the front, to a notable degree.  It is easier for many to push the pelvis up with the glutes particularly when so many individuals are lacking in the abdominal compartment. 

We have so many of our patients learn the “potty squat” where the buttock is pushed backwards in a proper squatting technique.  We do this to reteach gluteal work, hamstring length in an environment of proper abdominal bracing. IT takes time to get the technique down, but it is worth it.  And, Crawford’s article gives it even more validity with its effect on the sacral posturing and impairing pelvic floor tension.

There is much good information in this article by Crawford.  It is worth everyone’s read. If you have been here with us on The Gait Guys for awhile you will know that we hold the mighty glutes on a high pedestal.  They are absolute key in gait and many folks do not use them properly.  After a few rough weeks practicing going gradually deeper as tissue length and strength is earned many of our patients have an epiphany of how little they were using their glutes, and how poorly they squat and how weak they were in the lower limbs.  Even our elderly patients in their 70s and 80s benefit from early shallow potty squat progressions.  We just put a chair behind them in case they fall back. It is never shocking to see what a few weeks of propper “potty-ing” will do to a person.  Do them alot, and do them often.

Good potty-ing to ya’ll.

Shawn and Ivo………Kings of our own Potty Thrones

Here is Crawford’s article link once again.

http://breakingmuscle.com/womens-fitness/stop-doing-kegels-real-pelvic-floor-advice-women-and-men

A tangled tail of two, 2-joint muscles: Lombard’s Paradox

Two years ago we wrote this little piece on these 2 two joint muscles.  Their companionship mentally came up during the sorting out of a strange client case so we felt it was good karma to share it again.   This one may make your head spin.

We do not know where this write up came from and how much was our original material and how much was someone else’s. It was found on an old computer of long ago. If you can find the reference we would love to give it credit.  We do know that we added some stuff to this but we don’t even know what parts were ours !  Regardless, there is a brain twister here worth juggling in your heads.  Some of it we know is far reaching and even marginally incorrect, but we like mental aerobics to take it for what its worth. There is value in thinking about things this way. Lets start with this thought……..

When you are sitting the rectus femoris (a quad muscle) is “theoretically” shortened at the hip because the hip is in flexion. It also  crosses the bent knee in the front at it blends with the patellar tendon, thus it is “theoretically” lengthened at the knee.  When we stand up, the hip extends and the knee extends, making the R. Femoris “theoretically” lengthen at the hip and shorten at the knee.  Thus, it bodes the question…….did the R. Femoris even change length at all ? Did a concentric event occur at one end and an eccentric contractile event occur at the other ? Is that even possible ? And, the hamstrings kind of go through the same phenomenon on the other side of the knee and hip so you possibly have a very complex dialogue across the front and the back of the knee and hip during movement. And for every angle of flexion or extension change around the knee or hip both the quads and the hamstrings have this sliding scale of change they have to play, it should be a perfect give and take phenomenon. And when orchestrated cleanly the joints do not see impairment. This is part of the uniqueness of “two joint” muscles.  However, think about how a short quadriceps, a very common clinical finding, will impair this orchestra. Like an instrument out of tune the orchestration is in flux and alternative strategies ensue. How will the function at the knee be changed by this short quadriceps ? How will hip extension be impaired ?  How will the hamstring alter its function ? What will the consequences be ? What alternative motor patterns will be deployed ? And if you are just doing your gait analysis without a clinical examination what will you see as their compensation ? Now that your head is buzzing, onto Lombard’s paradox with more in depth thought on this topic.

Warren Plimpton Lombard (1855-1939) sought to explain why the quadriceps and hamstring muscles contracted simultaneously during the sit-to-stand motion.  He noted that the rectus femoris and the hamstrings are antagonistic, and this coactivation is known as Lombard’s paradox.

The paradox is classically explained by noting the relative moment arms of the hamstrings and rectus femoris at either the hip or the knee, and their effects on the magnitude of the moments produced by either muscle group at each of the two joints.

By virtue of the fact that muscles cannot develop different amounts of force in their different parts, the paradox develops.  The hamstrings cannot selectively extend the hip without imparting an equal force at the knee. Thus, the only way for hip extension and knee extension to occur simultaneously in the act of standing (or eccentrically in the act of sitting) is for the net moment to be an extensor moment at both the hip and knee joints. Lombard suggested three necessary conditions for such paradoxical co-contraction:

  • the lever arm of the muscle must be greater at its extensor end
  • a two-joint muscle must exist with opposite function
  • the muscle must have sufficient leverage so as to use the passive tendon properties of the other muscle

In 1989, Felix Zajac & co-workers pointed out that the role of muscles, particularly two-joint muscles, was much more complex than has traditionally been assumed. For example, in certain situations, the gastrocnemius could act as a knee extensor. It is clear now that the direction in which a joint is accelerated depends on the dynamic state of all body segments, making it difficult to predict the effect of an individual muscle contraction without extensive and accurate biomechanical models (Zajac et al, 2003).

 In fact, back to the gastrocnemius another 2+ joint muscle (crosses knee, mortise and subtalar joints), we all typically think of it as a “push off” muscle.  It causes the heel to rise and accelerates push off in gait and running. But, when the foot is fixed on the ground the insertion is more stable and thus the contraction, because the origin is above the posterior joint line, can pull the femoral condyles into a posterior shear vector. It thus, like the hamstrings, needs to be adequately trained in a ACL or post-operative ACL, deficient knee to help reduce the anterior shear of normal joint loading. It is vital to note, that when ankle rocker is less than 90  degrees (less than 90 degrees of ankle dorsiflexion is available), knee hyperextension is a viable strategy to progress forward over the ankle in the sagittal plane.  But in this scenario, the posterior shear capabilites of the gastrocnemius are brought to the front of the line as a frequent strategy.  And not a good one for the menisci we should mention.

Just some random thoughts for you today. We used to play such mental games during my orthopedic residency. The “what would happen if” scenarios. They stimulate thought, dialogue and debate and get the brain thinking more globally.  We hope you enjoyed the circus show today !

Shawn and Ivo…….. the gait guys

Andrews J G (1982)  On the relationship between resultant joint torques and muscular activity  Med Sci Sports Exerc  14: 361-367.

Andrews J G (1985)  A general method for determining the functional role of a muscle  J Biomech Eng  107: 348-353.

Bobbert MF, van Soest AJ (2000) Two-joint muscles offer the solution - but what was the problem? Motor Control 4: 48-52 & 97-116.

Gregor, R.J., Cavanagh, P.R., & LaFortune, M. (1985). Knee flexor moments during propulsion in cycling—a creative solution to Lombard’s Paradox. Journal of Biomechanics, 18, 307-16 .

Ingen-Schenau GJv (1989) From rotation to translation: constraints on multi-joint movement and the unique action of bi-articular muscles. Hum. Mov. Sci. 8:301-37.

Lombard, W.P., & Abbott, F.M. (1907). The mechanical effects produced by the contraction of individual muscles of the thigh of the frog. American Journal of Physiology, 20, 1-60.

Mansour J M & Pereira J M (1987)  Quantitative functional anatomy of the lower limb with application to human gait  J Biomech  20: 51-58.

Park S, Krebs DE, Mann RW (1999) Hip muscle co-contraction: evidence from concurrent in vivo pressure measurement and force estimation. Gait & Posture 10: 211-222.

Rasch, P.J., & Burke, R.K. (1978). Kinesiology and applied anatomy. (6th ed.). Philadelphia: Lea & Febiger.

Visser JJ, Hoogkamer JE, Bobbert MF & Huijing PA (1990) Length and Moment Arm of Human Leg Muscles as a Function of Knee and Hip Angles. Eur. J Appl Physiol 61: 453-460.

Zajac FE & Gordon MF (1989) Determining muscle’s force and action in multi-articular movement  Exerc Sport Sci Revs  17: 187-230.

Zajac FE, Neptune RR, Kautz SA (2003) Biomechanics and muscle coordination of human walking - Part II: Lessons from
dynamical simulations and clinical implications, Gait & Posure 17 (1): 1-17.

addendum: Oval track running. Part 2b

We think track speed work has value. Just in modest amounts. One can use the curves to train the ankles and chains as we mentioned in today’s earlier blog post. Then, reverse the track speedwork to hit the opposite sides as mentioned in the blog. 

We spend so much time running in a straight line that we lose the frontal plane (side to side) muscle skills and strength and hence develop risk for the dreaded “Cross Over Gait” (type that into the SEARCH box on the blog). We, as runners, desperately need this frontal plane strength. So rather than abolish the track, use it sparingly and effectively. Train smarter not harder.  Drive symmetry.  Thanks for reading today gang !


Shawn and Ivo

Oval Track Running Injuries, Part 2. The Details.

Last week we did a blog post on the problems that oval track running can set up in terms of injury and promoting asymmetry, LINK).  We wanted to briefly go back to that article to hit some details that many folks did not put together. 

Keep in mind as you read on that the scenario is the typical counterclockwise oval track running.  As it said in the study, “analysis indicated that the left (inside limb) invertors increased in strength significantly more than the right (outside limb) invertors while the right evertors increased in strength significantly more than the left evertors.”

What this means is that someone who runs repeatedly counterclockwise on an oval track will drive skill, endurance and strength (the 3 basic tenets to solidifying a motor pattern) into the inside limb invertor muscles. This means the tibialis posterior, medial gastrocsoleus complex, flexor hallucis longus (likely) as well as some of the medial foot intrinsics. Because they are invertors, they are fighting the pronatory eversion forces on the track surface. These muscles will help to keep the ankle and foot neutral and slow the rate of foot pronation.  When these muscles are weak we see posterior shin splints in the left foot/ankle early in the track season. 
Whereas, the outside limb will be staving off the forces that want to launch the person off of the curves and off the outside of the track. Hence this limb will constantly redirect the forces inwards into the center of the track so that centripetal forces can continue to act to keep the runner on the curve (centripetal force is defined as a force which keeps a body moving with a uniform speed along a circular path and is directed along the radius towards the center). This means that the evertor muscles of the outside leg will be gaining skill, endurance and strength with every lap of training.  Hence, improvements in the peroneal group, the lateral gastrocsoleus namely.  Without these improvements the outside ankle would eventually fail and the forces are synonymous with inversion sprain mechanics.  Remember, here as well, these improvements in these muscle groups are designed to try and hold the ankle in a safe neutral biomechanical position and avoid inversion injury via the imparted forces.

It is also imperative to point out that the inside foot will see more ankle (mortise) dorsiflexion and eversion and the outside ankle will be seeing more (mortise) dorsiflexion and inversion.  We know that there are two heads to the tibialis anterior, one helps create more eversion and one more inversion.  Do we also want to see an imbalance and experience differential there as well ? If you have been with The Gait Guys for the last 4 years you will know that we harp on symmetrical ankle rocker range and function.  How can we expect to stay injury free with all this purposely driven asymmetrical skill, endurance and strength ?
Then one must remember that these muscular chains do not stop locally. If the inside foot invertor muscles are strengthened it is likely that the tonus and capabilities of the inner leg chain will be improved upon let alone the spiral chains as well.  Inner thigh groups including the adductors improve lower abdominal function from what we see in decades of clients. But remember, the outside leg is not seeing this same chain of muscles getting ramped up, rather it is seeing the lateral chain higher up improving which included the right gluteus medius to name just one. Furthermore, and we have talked about this until blue in the face, when  you have asymmetrical lower limb function you have asymmetrical upper limb swing.  We see shoulder and neck imbalances in our track athletes all the time.  And, then think about this, on non-track days what to many track athletes do ? They then go and drive massive strength into these asymmetries by going into the weight room and drive the problem deeper.

Our point here is that we are driving massive asymmetry into the human track machine. As as with any machine, loosen one bolt on one side and tighten the same bold on the other side and there will be a price to pay in the function of the machine. In the short term it will be one of performance, in the slightly longer term it will be one of injury.  As this study suggested, “ a high incidence of lower extremity injury (68%) occurred in this sample of runners, corresponding to an injury rate of 0.75 injuries per 100 person-hours of sport exposure. Although sample size was limited, secondary analysis indicated that strength changes were not significantly different for injured (n = 17) and uninjured (n = 8) runners (p > 0.05)”. Our response to the later statement is “give it time!”.  If you are one of these track athletes and are not injured, we like to say that you are likely lucky……. for now.
If you are a coach or an athlete, for the sake of your feet and legs……. use your head.
Shawn & Ivo
details, details, details……… because details matter.
______________________

Clin J Sport Med. 2000 Oct;10(4):245-50.

Asymmetrical strength changes and injuries in athletes training on a small radius curve indoor track.

Beukeboom C, Birmingham TB, Forwell L, Ohrling D.

Abstract

OBJECTIVES:

1) To evaluate strength changes in the hindfoot invertor and evertor muscle groups of athletes training and competing primarily in the counterclockwise direction on an indoor, unbanked track, and 2) to observe injuries occurring in these same runners over the course of an indoor season.

DESIGN:

Prospective observational study.

SETTING:

Fowler-Kennedy Sport Medicine Clinic, The University of Western Ontario, London, Ontario.

PARTICIPANTS:

A convenience sample of 25 intercollegiate, long sprinters (200-600 m) and middle distance runners (800-3,000 m) competing and training with the 1995-1996 University of Western Ontario Track and Field team.

MAIN OUTCOME MEASURES:

A standardized protocol using the Cybex 6000 isokinetic dynamometer was used to measure peak torques of the hindfoot invertor and evertor muscle groups of both limbs using concentric and eccentric contractions performed at angular velocities of 60, 120, and 300 degrees/sec. Changes in peak torques between the preseason and postseason values were calculated and compared using a repeated measures analysis of variance test. Injury reports were collected by student athletic trainers and in the Sport Medicine and Physiotherapy clinic.

RESULTS:

Primary analysis indicated that the left (inside limb) invertors increased in strength significantly more than the right (outside limb) invertors (p = 0.01), while the right evertors increased in strength significantly more than the left evertors (p = 0.04). A high incidence of lower extremity injury (68%) occurred in this sample of runners, corresponding to an injury rate of 0.75 injuries per 100 person-hours of sport exposure. Although sample size was limited, secondary analysis indicated that strength changes were not significantly different for injured (n = 17) and uninjured (n = 8) runners (p > 0.05).

CONCLUSIONS:

The observed small, but statistically significant, asymmetrical changes in strength of the hindfoot invertor and evertor muscle groups can best be described as a training effect. Altered biomechanics proposed to occur in the stance foot while running on the curve of the track are discussed in relation to the observed strength imbalance. A causal link between strength changes and lower extremity injuries cannot be inferred from this study, but suggestions for further research are made.

tumblr_mo8dnmvLAB1qhko2so1_1280.jpg
tumblr_mo8dnmvLAB1qhko2so2_1280.jpg

So, what kind of shoes do I put this guy in?


The answer is, well…it depends.

This gentleman has a large Q angle (need to know more about Q angles? click here). The second photo is taken from above looking down at his knee.


If he has medial (inside) knee pain (possibly from shear forces), you would want to unload the medial knee, so a more flexible shoe that would allow more pronation of the foot and INCREASE the amount of valgus would open the medial joint space and probably be more appropriate.

If he had lateral (outside) knee pain (possibly from compressive forces), then a shoe with more support (like a motion control shoe) would help to unload the lateral knee and create more space may be appropriate. And that just covers the local knee issue. What if he has a pes planus and needs more than a “more stable” shoe ? And, what if that pes planus is rigid and won’t accept a more rigid arch supporting device ? What are you gonna do then ?

The caveat?

There are no hard and fast rules AND there is no substitute for examining the person and asking LOTS of questions BEFORE putting them in a shoe. You must approach each case on a case-by-case basis with all factors brought into the fold to make the best clinical decision.  Simply watching them walk, as you have heard it over and over again here on The Gait Guys, will lead you into wrong assumptions much of the time. Sometimes the obvious fix is not possible or won’t be tolerated by the person’s foot, knee, hip or body.  So, sometimes you have to settle with something in-between. 

Need to, or dying to, know more? Take our 3 part National Shoe Fit Program and be a shoe guru!

Email us at thegaitguys@gmail.com for details.

tumblr_mo22vpR5zv1qhko2so1_1280.jpg
tumblr_mo22vpR5zv1qhko2so2_1280.jpg
tumblr_mo22vpR5zv1qhko2so3_1280.jpg

So, what’s in a test? The standing tripod test

Many of you probably recognize this as the standing tripod test (see here for video of standing tripod exercise). You have the individual stand on both foot tripods (center of calcaneus, head of 1st metatarsal and head of 5th metatarsal). Then have the person lift one leg and remain on the other tripod. This individual was featured in last thurdays post.

watch for:
collapse of arch
body lean
hip sway
falling to either side
spontaneous combustion (OK, this is a RARE complication).

What do we see here?

top picture, L leg

  • collapse of arch
  • forefoot eversion
  • valgus angulation of knee
  • pelvic shift to L
  • arm moves to compensate on right

middle picture, R leg

  • mild collapse of arch
  • pronounced pelvic shift to left
  • body lean to R
  • compensatory arm movement on L

Bottom picture

  • note the pronounced appearance of the head of the 1st met on the L foot
  • bilateral hallux abducto valgus most likely means bilateral uncompensated forefoot varus
  • more hammering (flexion) of digits on the R foot
  • note the prominence of the tail or tubercle of the 5th metatarsal on the L foot

Some questions for you:

Q: why does he have a pelvic shift to the left in both r and L leg standing?

A: look at the feet. He is able t make a better tripod on the L foot, probably because of the prominence of the head of the 1st metatarsal. also note the valgus angulation of the knee, which helps to shift the center of mass to the midline. this is most likely a long term compensation

Q: Why does he have more body lean to the R during r leg standing?

A: see previous question AND he probably has weaker hip abductor muscles on the right

Q: did you notice that the hand and forearm were more supinated in the top (L standing) picture than the middle (r standing) picture (where he is more pronated)? What gives?

A: Wow, this is some subtle stuff, eh? Look to the brain. remember coordinate arm swing? (if not, look here and here) Supination accesses more of the extensors of the arm and pronation more of the flexors. When we have less extensor activity (remember flexor dominance? if not, click here) you have a tendency to use your flexors more to compensate (you use what you have available to you). It appears that he has a much tougher time standing on his r leg (judging from the increased compensation)

Q: Wow,  nice floors! Are they hardwood?

A: No, laminate

The Gait Guys. Helping you help others each and every post. Keep your eyes and your mind open : )

Injures induced by running the same direction on an indoor/outdoor track.

We have been seeing, addressing and treating this problem for years, far too many years. There are few things that frustrate us more than coaches and athletes who refuse to alternate their track workouts into the clockwise direction to help avoid the repetitious detrimental training effects of continued and repeated counterclockwise track training. 

Here is a study from 2000 that tends to validate a causal link to our point. The study confirms a statistically significant asymmetrical strength development in the hindfoot invertor and evertor muscle groups. 

Imbalances are a frequent and well known cause of injury.  Consciously driving this asymmetry is the equivalent to purposefully encouraging injury if you as us.  Why anyone would not heed recommendations to balance out workout effects is beyond us.  We encourage road work so that there are no repetitive track banks to negotiate and thus knowingly drive asymmetry.  When weather makes outdoor work an impossibility then days should ideally alternate the flow on the track to counter the direction of the previous day.  And as track event days get closer then the inevitable will occur that you want to simulate race day direction but at least deeply engrained (skill, endurance and strength) training effects in the counterclockwise direction will not terribly risk injury as much as if there had been no training changes and accommodations.

The smaller the track radius the more detrimental the training effects. Frequency and duration of the training further magnifies training effects. A banked track will mute some of the effects but not all of them. 
So why not just reverse the direction of your track training ?  And don’t tell is it is logistically too difficult to coordinate, that is a lame excuse. You are training yourself or your athletes to be better runners, so you should want to reduce risks and optimize training effects. Period.

Shawn and Ivo……… The Gait Guys

Clin J Sport Med. 2000 Oct;10(4):245-50.

Asymmetrical strength changes and injuries in athletes training on a small radius curve indoor track.

Beukeboom C, Birmingham TB, Forwell L, Ohrling D.

Abstract

OBJECTIVES:

1) To evaluate strength changes in the hindfoot invertor and evertor muscle groups of athletes training and competing primarily in the counterclockwise direction on an indoor, unbanked track, and 2) to observe injuries occurring in these same runners over the course of an indoor season.

DESIGN:

Prospective observational study.

SETTING:

Fowler-Kennedy Sport Medicine Clinic, The University of Western Ontario, London, Ontario.

PARTICIPANTS:

A convenience sample of 25 intercollegiate, long sprinters (200-600 m) and middle distance runners (800-3,000 m) competing and training with the 1995-1996 University of Western Ontario Track and Field team.

MAIN OUTCOME MEASURES:

A standardized protocol using the Cybex 6000 isokinetic dynamometer was used to measure peak torques of the hindfoot invertor and evertor muscle groups of both limbs using concentric and eccentric contractions performed at angular velocities of 60, 120, and 300 degrees/sec. Changes in peak torques between the preseason and postseason values were calculated and compared using a repeated measures analysis of variance test. Injury reports were collected by student athletic trainers and in the Sport Medicine and Physiotherapy clinic.

RESULTS:

Primary analysis indicated that the left (inside limb) invertors increased in strength significantly more than the right (outside limb) invertors (p = 0.01), while the right evertors increased in strength significantly more than the left evertors (p = 0.04). A high incidence of lower extremity injury (68%) occurred in this sample of runners, corresponding to an injury rate of 0.75 injuries per 100 person-hours of sport exposure. Although sample size was limited, secondary analysis indicated that strength changes were not significantly different for injured (n = 17) and uninjured (n = 8) runners (p > 0.05).

CONCLUSIONS:

The observed small, but statistically significant, asymmetrical changes in strength of the hindfoot invertor and evertor muscle groups can best be described as a training effect. Altered biomechanics proposed to occur in the stance foot while running on the curve of the track are discussed in relation to the observed strength imbalance. A causal link between strength changes and lower extremity injuries cannot be inferred from this study, but suggestions for further research are made.

tumblr_mny9smEGnB1qhko2so1_1280.jpg
tumblr_mny9smEGnB1qhko2so2_1280.jpg
tumblr_mny9smEGnB1qhko2so3_1280.jpg
How good is your tripod? Looks can be deceiving

You have heard us here on the blog talking about the foot tripod. For those of you who may not remember; click here and here for a refresher.
In the right foot (far left image) pedograph, you notice increased ink under the three points of the tripod (pass your mouse or click on the image to enlarge): The center of the calcaneus, the head of the 1st metatarsal and the head of the 5th metatarsal. Looks pretty good, correct ? The left one (center image) shows more weight on the lateral aspect of the foot.

Note now the picture of the feet that go with this tripod (far right). Pretty scary, huh ? Their left foot actually looks like a better tripod, especially the medial tripod.  So, what does that tell you? It tells you that from the pedograph print (remember the person is walking across the pedograph), they are able to compensate better on the right than on the left.  Remember what we always say, what you see is not what is wrong or what is actually truthfully going on.
So, what do you do?
consider exercises to increase the foot tripod (tripod standing, the Extensor hallucis brevis exercise,  lift spread reach ) and try and make the weight distribution equal from side to side.

The Gait Guys. Making sure you are firing on all your cylinders (or walking on all 3 points of the tripod). 

Want to know more? Consider taking the 3 part National Shoe Fit Program. Email us at thegaitguys@gmail.com for more details. 

The Coffee Walkers: Why coffee should come in a sippy cup. A tangent article on gait concepts.

It has been a year since we posted this one on our blog, one of our 900 articles written by your’s truly.  And as we were working on another new post while gulping our newest bio-hack (bulletproof coffee= micotoxin free coffee beans + grass fed butter and MCT oil all blended to a foamy delicious brain drink courtesy of our friend Dave Asprey over at the Bulletproofexec) we felt that our article wouldn’t be at the level we wanted it so we remembered “The Coffee Walkers” post we did 12 months ago.  Here it is in its original caffeinated form. Enjoy.

———-

It sounds like some creepy Steven King inspired blog post today (reminds us of the Tommy Knockers). However, the truth of the matter is that this is a gait blog post on walking.

Why is it so hard to walk with a cup of “joe” or a coffee mug of anything liquid for that matter ? It is all about physics and wave frequency.

In a neat little article written by Natalie Wolchover for CNBC.com she says,

“New research shows that “the properties of mugs, legs and liquid conspire to cause spills, most often at some point between your seventh and tenth step. So says a pair of fluid physicists at the University of California at Santa Barbara.”

This is a physics problem actually. It is one of frequencies to be precise. Apparently the human stride has almost exactly the right frequency and amplitude to drive the natural oscillations of a liquid when it is in a classic shaped and sized coffee mug. The frequency of the liquid sloshing to and fro in your mug has the same frequency as your gait. So, when you are walking with your mug-of-Joe there is an additive effect of the two frequencies and apparently the more steps that are taken the effect eventually summates until the lip of the mug is exceeded. Stopping or slowing down once the ride is underway and the summation effect is changed, but not necessarily reversed. A sudden change in the frequency, such as you suddenly stopping, slowing or speeding up, can abruptly change the effect on the mug however the fluid within the vessel is not changed at the same rate and thus it can breach the edge of the mug.

According Wolchover, of one of the linked articles,

“Coffee drinkers often attempt to walk quickly with their cups, as if they might manage to reach their destination before their sloshing java waves reach a critical height. This method is scientifically flawed. It turns out that the faster you walk, the closer your gait comes to the natural sloshing frequency of coffee. To avoid driving the oscillations that lead to a spillage, walk slowly.” The other valid suggestions were to watch the mug and to accelerate slowly.

We take the easier route. Maybe we are smarter, maybe lazier, and maybe just tired of always analyzing things … . . we choose a container with a damn lid. Can you say “Einstein-ian” ? We don’t like coffee sloshing on our clothes or rugs.

Shawn and Ivo ………… jacked up on Joe.  Get you never thought we would be able to turn coffee-talk into a gait article huh ?  And you thought we would run out of gait stuff to talk about !

Article links that provided the inspiration for today’s post, and that we referenced.

http://esciencenews.com/articles/2012/06/04/rhythmic.firing.nerve.cells.involved.bodys.movements

http://www.msnbc.msn.com/id/47364282/ns/technology_and_science-science/#.T-OZQXBPH4g

Do you bank your head into the turns when you run corners ? You had better !

From time to time we get asked, why have you guys focused so intently on gait ?  Our answer is always the same. It is the most frequently engaged motor pattern that the body does other than breathing. Without the ability to walk our health declines on many levels.  And, because gait impacts every aspect of the human organism when it comes to locomotion.  All too often gait is thought of as what the feet are doing. We see this as evidenced by how many shoe stores still just do a foot treadmill video analysis, but thankfully, many stores have gotten the message from somewhere that the rest of the body is vital to the assessment as well. However,  how many of you are capturing the  head on your gait analysis ?  The head is where the software exists. Balance, visual, many proprioceptive centers, auditory and the processing of these and more are all located north of all of the other body parts.  

We have done many previous blog posts on the visual and auditory centers and how they impact gait.  You can goto our blog and type these into our SEARCH box and read more about these topics however today we wanted to share with you an article that is a few years older to show that there are many predictive gait parameters that are pre-calculated and have a huge determining effect and outcome on one’s gait. 

Anticipatory head movements during turns, whether running on a banked track, taking tight turns on your local road, trail running on the side of slopes or even when biking and trail riding, all occur in order to gather advance visual information about the trajectory and potential obstacles.  Below is an abstract that pretty much speaks for itself and you should read it. In the study they investigate the relationship between head and trunk movements during ambulation.  They discuss how the head makes its calculated turn prior to the trunk turning, setting up the body for a proper negotiation of the banking of the turn thus gathering “visual information about the trajectory and potential obstacles”. 

If you are truly a gait geek, you should get a little warm and fuzzy about this. And if you do not, well, you might still be a gait geek if you think a bit further about this and understand that cervical spine stability and mobility can negatively or positively affect the outcome.  It just goes to prove once again, if you are going to address someones gait, you better have a clinical examination as part of their gait assessment if you want to truly find out where their impairment exists, and hides. If you depend solely on video, you are most likely giving advice on missing information, this we pretty much promise you. For example, we recall a younger lady from a few years ago, a patient of ours, who was left with unilateral deafness from a vaccine complication (MMR vaccine). She would always have her better ear turned more forward to gain an auditory edge to her hearing loss on the opposite side (we all do the same thing when we are talking to someone in a loud place). What we noticed, and what she was unaware of, what that this impaired her arm swing bilaterally making the one side swing more and the other less (which was a huge clue into her shoulder problem that she was seeing us for).  This in turn, because they are neurologically connected by reflexive locomotion patterns, impaired swing and stance phases of her gait on both sides.  It just goes to prove our point earlier, and to further make the point that, you cannot impact symmetry in one place and not expect that the body will not compensate for that asymmetry elsewhere. It is all connected … . you know the song.

If you are a gait geek, you can see the entire picture of the human organism clearer than many others.  

Enjoy the whole abstract below for the great details by Sreenivasa et al.

* Shawn and Ivo …….. not your average wild and crazy guys……unless there is a gait topic to talk about.

Exp Brain Res. 2008 Nov;191(3):313-20. doi: 10.1007/s00221-008-1525-3. Epub 2008 Aug 8.

Walking along curved paths of different angles: the relationship between head and trunk turning.

Sreenivasa MN, Frissen I, Souman JL, Ernst MO.

Source

Max Planck Institute for Biological Cybernetics, Spemannstrasse 41, 72076 Tübingen, Germany.

Abstract

Walking along a curved path requires coordinated motor actions of the entire body. Here, we investigate the relationship between head and trunk movements during walking. Previous studies have found that the head systematically turns into turns before the trunk does. This has been found to occur at a constant distance rather than at a constant time before a turn. We tested whether this anticipatory head behavior is spatially invariant for turns of different angles. Head and trunk positions and orientations were measured while participants walked around obstacles in 45 degrees, 90 degrees, 135 degrees or 180 degrees turns. The radius of the turns was either imposed or left free. We found that the head started to turn into the direction of the turn at a constant distance before the obstacle (approximately 1.1 m) for turn angles up to 135 degrees . During turns, the head was consistently oriented more into the direction of the turn than the trunk. This difference increased for larger turning angles and reached its maximum later in the turn for larger turns. Walking speeds decreased monotonically for increasing turn angles. Imposing fixed turn radii only affected the point at which the trunk started to turn into a turn. Our results support the view that anticipatory head movements during turns occur in order to gather advance visual information about the trajectory and potential obstacles.