Femoral Anteversion?

image source: Byun HY, Shin H, Lee ES, Kong MS, Lee SH, Lee CH. The Availability of Radiological Measurement of Femoral Anteversion Angle: Three-Dimensional Computed Tomography Reconstruction. Ann Rehabil Med. 2016;40(2):237-43.

image source: Byun HY, Shin H, Lee ES, Kong MS, Lee SH, Lee CH. The Availability of Radiological Measurement of Femoral Anteversion Angle: Three-Dimensional Computed Tomography Reconstruction. Ann Rehabil Med. 2016;40(2):237-43.

 

Here is a free, full text article that talks about using 3D CT for a precise measurement of things like femoral and tibial torsions and versions. Remember that this will directly influence the amount of internal and external rotation of the hip, which will have a direct influence on gait. Remember you need 4-6 degrees of internal and external rotation to ambulate normally

Dr Ivo Waerlop, one of The Gait Guys

Byun HY, Shin H, Lee ES, Kong MS, Lee SH, Lee CH. The Availability of Radiological Measurement of Femoral Anteversion Angle: Three-Dimensional Computed Tomography Reconstruction. Ann Rehabil Med. 2016;40(2):237-43.

#gait, #measurement, #femoraltorsion, #femoralversion, #antetorsion, #anteversion, #retrotorsion, #retroversion

link to free full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855117/

 

“Due to the shape of the condyles and the menisci, and the location of ligaments of and muscles acting on the knee, the joint rotation axis is located medially in the knee joint. This also in part explains why the lateral condyle and meniscus …

“Due to the shape of the condyles and the menisci, and the location of ligaments of and muscles acting on the knee, the joint rotation axis is located medially in the knee joint. This also in part explains why the lateral condyle and meniscus are more mobile. Maximum extension of the knee is caused by these factors and the “screw home” mechanism of the cruciate ligaments. The popliteal muscle is connected with the lateral meniscus and the caput fibulae: it locks the knee joint in and unlocks the knee joint out of its maximum extension. Moreover, it plays an important role for proprioception in the knee joint and is known to cause posterolateral knee pain.

from: http://www.anatomy-physiotherapy.com/…/94-test-your-knowled…

The Power of Observation: Part 2

Let’s take a closer look at yesterdays post and the findings. If you are just picking up here, the post will be more meaningful if you go back and read it. 


The following are some explanations for what you were seeing:

torso lean to left during stance phase on L?

if he has a L short leg, he will need to clear right leg on swing phase. We have spoken of strategies around a short leg in another post. This gentleman employs 2 of the 5 strategies; torso lean is one of them

increased progression angle of both feet?

Remember he has femoral retroversion. You may have read about retrotorsion here. He has limited internal rotation o both thighs and must create the requisite 4-6 degrees necessary to walk. He does this by spinning his foot out (rotating externally).

decreased arm swing on L?

This is most likely cortical, as he seems to have decreased proprioception on both legs during 1 leg standing. Proprioception feeds to the cerebellum, which in turn fires axial extensors through connections with the vestibular system. Diminished input can lead to flexor dominance (and extensors not firing). Note the longer stride forward on the right leg compared to the left with less hip extension (yes, we know, a side view would be helpful here).

circumduction of right leg?

This is the 2nd strategy for getting around that L short leg.

clenched fist on L?(esp when standing on either leg)

see the decreased arm swing section. This is a subtle sign of flexor dominance, which appears to be greater on the right.

body lean to R during L leg standing?

This is again to compensate for the L short leg. He has very mild weakness of the left hip abductors as well, more when moving or using them in a synergistic fashion (ie functional weakness) than to manual testing.

Well, what do you think? Now you can see how important the subtle is and that gait analysis may complex than many think.

We are and we remain, the Geeky Guru’s of Gait: The Gait Guys

tumblr_mmb0dfAEZC1qhko2so1_1280.jpg
tumblr_mmb0dfAEZC1qhko2so2_1280.jpg
tumblr_mmb0dfAEZC1qhko2so3_1280.jpg
tumblr_mmb0dfAEZC1qhko2so4_1280.jpg
tumblr_mmb0dfAEZC1qhko2so5_1280.jpg
tumblr_mmb0dfAEZC1qhko2so6_1280.jpg

So, What’s going on here?

Remember torsions and versions? If not, click here, here, here and here for a review. 

In the top left view, you are seeing the left foot in a neutral posture with the knee in the (relative) midline. Notice how the foot adducts? This person has INTERNAL TIBIAL TORSION. They also have hammer toes and a cavus (high) arch. 

In the top right, the foot is again in a neutral posture and the R foot is adducted EVEN FARTHER. Again, internal tibial torsion along with hammer toes and a cavus foot. For a hint, look at the tibial tuberosity; it should line up with an imaginary line drawn through the 2nd metatarsal. 

In the middle left picture I am fully internally rotating the R leg. Hmm, no internal rotation of the hip (note the knee goes little beyond midline). You need 4 degrees of internal rotation of the hip to walk normally and most folks have 40 degrees. This person has FEMORAL RETROTORSION.

In the middle right picture I am fully internally rotating the L leg. Hmm, no internal rotation of the hip here either; in fact, even less than the right. Again, FEMORAL RETROTORSION. 

In the bottom two pictures, the goniometer is aligned with the ASIS and tibial tuberosity. I am not sure if you can see it, but it is 18 degrees on the left and 20 on the right. Normally the Q angle is between 8 and 12 degrees. This person has developed compensatory GENU VALGUS.

Does it surprise you he has pain on the outside of his feet? How about knee pain?

So what does this mean?

  • he will have a decreased progression angle of the feet
  • he will externally rotate the feet to allow a more normal progression angle and “create” the internal rotation of the hip needed
  • this will place the knee out side the saggital plane and create a potential conflict at the knee
  • he will stress the ligaments at the medial knee secondary to his valgus deformity
  • he will increase the pressure on the lateral condles of the femur and lateral tibial plateau, leading to early degeneration

So what do you do?

  • normalize, to the best of his (and your) abilities, foot and lower extremity mechanics with manipulation, exercise, etc
  • ensure he has an adequate foot tripod with the tripod and EHB exercises
  • In his case, construct an orthotic, which will correct rearfoot pronation and yet not push the knee outside the saggital plane, by having a forefoot valgus post in place
  • educate him about proper footwear with an adequate toe box and not too much torsional rigidity (ie no motion control features)
  • follow him at regular intervals to make sure he doesn’t fall off the turnip truck
The Gait Guys. Making it real, every day, every post, every PODcast.
all material copyright 2013 The Gait Guys/ The Homunculus Group.