Who Rules -- The glutes or the quads? Well, it is complicated.

We have often talked about how important it is to be able to achieve terminal hip extension for an athlete, and arguably for everyone. This means one must have strength of the glutes into that terminal range so one can actually achieve the range of motion and access it functionally. If one does not, then extension movements may occur in the lumbar spine via some anterior pelvic tilt. However, one must not dismiss that upright posture needs sufficient quadriceps strength as well -- meaning, hip extension and knee extension get us to an upright posture and make locomotion possible. If we make the hip flexors or quadriceps tight, due to weakness of the lower abdominals or glutes,  we get anterior pelvic posturing and less hip extension (these are admittedly very rough principles, we all know it is far more complex that this).  What I am saying is that there is an interaction amongst groups of muscles, functional patterns of engagement, recruitment and whatnot. 

One must clearly realize how much knee and hip motions are coupled and work with and off of eachother.  If we bend over in a squatting type motion, we are in hip flexion and knee flexion. When we stand, hip and knee extension. These guys play off of eachother.  One must consider these issues when movements are more advanced and loading and loading rates are magnified, such as in squatting type lifting.  

A few weeks ago Bret Contreras in conjunction with Strength and Conditioning Research put out an article by Yamashita , yes, a 1988 article.  "EMG activities in mono- and bi-articular thigh muscles in combined hip and knee extension."  What this article looked at was what happened during isolated hip extension and isolated knee extension, and more importantly, what happened to the forces when both joints loaded simultaneously, paired in generating extension at the hip and knee, as in a squat. 

This article suggested that when hip and knee extension forces are generated in conjunction, the knee extensors are more activated than if the same force was generated in isolation. What this seemed to suggest is that during the extension phase of a squat, it is easy for the quad thigh muscles (rectus femoris, vastus medialis in this study) to to try and rule the movement, from an activation perspective -- the hip extensors (g. max and semimembranosus) take second seat.  We have talked many times about the dangers of this principle when we frequently say "the glutes should be in charge of the hip, not the quads, when the quads try to apply dominant control of the hip motion, trouble may ensue." Admittedly, this may not be entirely true and it is very loosely stated, but the principle has some sound value when it is approached from how we intend it to be heard, that many athletes do not have sufficient glute strength, hip extension range of motion, and poor control of pelvic neutral. So, they dump into the quads because as we see here in this study, they are very appropriately positioned to help synergistically drive the positioning for, and activity of, hip extension motor pattern production. Is this why we see small buttocks and large quadriceps in distance runners, and the opposite in sprinters ?  We think so, but we need to dive deeper into the research to prove or disprove it, but the principles seem to make sense.
This is why I like to initially drive my glute and hip extension work with my clients in a more knee flexed position, such as supine bridges.  I cannot say it better than Bret Contreras did when he reviewed this article,  

"So exercises that involve less knee extension (glute bridges, hip thrusts, deadlifts, pull throughs and back extensions) will tend to produce much greater hip muscle activation than those that involve more knee extension (squats, lunges, and leg presses), although there are always other factors involved of course!".  

If you are not following Bret's and Strength & Conditioning Research's work, you are missing out, They are thorough and insightful, they do their homework, learn from them.
We clearly need to dive into some newer research on this topic, we will see if we can squeeze out the time. 


- Dr. Shawn Allen, the other "gait guy"


Here is an embedded code for the beautiful slide that accompanied Strength and Conditioning Research's summary of the study. If you cannot find it above in this post, goto their Facebook page and scroll to Sept 22nd, 2016. You will find it beautifully laid out there.  Beautiful job S&CR!


<iframe src="https://www.facebook.com/plugins/post.php?href=https%3A%2F%2Fwww.facebook.com%2FStrengthandConditioningResearch%2Fposts%2F982124818565207%3A0&width=500" width="500" height="731" style="border:none;overflow:hidden" scrolling="no" frameborder="0" allowTransparency="true"></iframe>

Yamashita  1988. Eur J Appl Physiol Occup Physiol. 1988;58(3):274-7. EMG activities in mono- and bi-articular thigh muscles in combined hip and knee extension.
https://www.ncbi.nlm.nih.gov/pubmed/3220066
 

Podcast 78: Step Width Gait, Training Asymmetries & more

Show sponsors: 

www.newbalancechicago.com

www.lemsshoes.com

A. Link to our server: 

http://traffic.libsyn.com/thegaitguys/pod_78ff.mp3

Direct Download: 

http://thegaitguys.libsyn.com/podcast-78

B. iTunes link:

https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138

C. Gait Guys online /download store (National Shoe Fit Certification and more !) :

http://store.payloadz.com/results/results.aspx?m=80204

D. other web based Gait Guys lectures:

www.onlinece.com   type in Dr. Waerlop or Dr. Allen,  ”Biomechanics”

______________

Today’s Show notes:

24-year-old woman missing entire cerebellum exemplifies the amazing power of brain plasticity

Brain scans reveal ‘gray matter’ differences in media multitaskers

Who are we: Ivo talk a bit about yourself and your educational history and what is your website ?
Shawn…..do the same
and……lets keep each interesting but to just a few minutes
Effect of step width manipulation on tibial stress during running
Does Limited Internal Femoral Rotation Increase Peak Anterior Cruciate Ligament Strain During a Simulated Pivot Landing?
http://ajs.sagepub.com/content/early/2014/09/22/0363546514549446.abstract
Quadriceps Muscle Function After Exercise in Men and Women With a History of Anterior Cruciate Ligament Reconstruction
http://natajournals.com/doi/abs/10.4085/1062-6050-49.3.46

A tangled tail of two, 2-joint muscles: Lombard’s Paradox

Two years ago we wrote this little piece on these 2 two joint muscles.  Their companionship mentally came up during the sorting out of a strange client case so we felt it was good karma to share it again.   This one may make your head spin.

We do not know where this write up came from and how much was our original material and how much was someone else’s. It was found on an old computer of long ago. If you can find the reference we would love to give it credit.  We do know that we added some stuff to this but we don’t even know what parts were ours !  Regardless, there is a brain twister here worth juggling in your heads.  Some of it we know is far reaching and even marginally incorrect, but we like mental aerobics to take it for what its worth. There is value in thinking about things this way. Lets start with this thought……..

When you are sitting the rectus femoris (a quad muscle) is “theoretically” shortened at the hip because the hip is in flexion. It also  crosses the bent knee in the front at it blends with the patellar tendon, thus it is “theoretically” lengthened at the knee.  When we stand up, the hip extends and the knee extends, making the R. Femoris “theoretically” lengthen at the hip and shorten at the knee.  Thus, it bodes the question…….did the R. Femoris even change length at all ? Did a concentric event occur at one end and an eccentric contractile event occur at the other ? Is that even possible ? And, the hamstrings kind of go through the same phenomenon on the other side of the knee and hip so you possibly have a very complex dialogue across the front and the back of the knee and hip during movement. And for every angle of flexion or extension change around the knee or hip both the quads and the hamstrings have this sliding scale of change they have to play, it should be a perfect give and take phenomenon. And when orchestrated cleanly the joints do not see impairment. This is part of the uniqueness of “two joint” muscles.  However, think about how a short quadriceps, a very common clinical finding, will impair this orchestra. Like an instrument out of tune the orchestration is in flux and alternative strategies ensue. How will the function at the knee be changed by this short quadriceps ? How will hip extension be impaired ?  How will the hamstring alter its function ? What will the consequences be ? What alternative motor patterns will be deployed ? And if you are just doing your gait analysis without a clinical examination what will you see as their compensation ? Now that your head is buzzing, onto Lombard’s paradox with more in depth thought on this topic.

Warren Plimpton Lombard (1855-1939) sought to explain why the quadriceps and hamstring muscles contracted simultaneously during the sit-to-stand motion.  He noted that the rectus femoris and the hamstrings are antagonistic, and this coactivation is known as Lombard’s paradox.

The paradox is classically explained by noting the relative moment arms of the hamstrings and rectus femoris at either the hip or the knee, and their effects on the magnitude of the moments produced by either muscle group at each of the two joints.

By virtue of the fact that muscles cannot develop different amounts of force in their different parts, the paradox develops.  The hamstrings cannot selectively extend the hip without imparting an equal force at the knee. Thus, the only way for hip extension and knee extension to occur simultaneously in the act of standing (or eccentrically in the act of sitting) is for the net moment to be an extensor moment at both the hip and knee joints. Lombard suggested three necessary conditions for such paradoxical co-contraction:

  • the lever arm of the muscle must be greater at its extensor end
  • a two-joint muscle must exist with opposite function
  • the muscle must have sufficient leverage so as to use the passive tendon properties of the other muscle

In 1989, Felix Zajac & co-workers pointed out that the role of muscles, particularly two-joint muscles, was much more complex than has traditionally been assumed. For example, in certain situations, the gastrocnemius could act as a knee extensor. It is clear now that the direction in which a joint is accelerated depends on the dynamic state of all body segments, making it difficult to predict the effect of an individual muscle contraction without extensive and accurate biomechanical models (Zajac et al, 2003).

 In fact, back to the gastrocnemius another 2+ joint muscle (crosses knee, mortise and subtalar joints), we all typically think of it as a “push off” muscle.  It causes the heel to rise and accelerates push off in gait and running. But, when the foot is fixed on the ground the insertion is more stable and thus the contraction, because the origin is above the posterior joint line, can pull the femoral condyles into a posterior shear vector. It thus, like the hamstrings, needs to be adequately trained in a ACL or post-operative ACL, deficient knee to help reduce the anterior shear of normal joint loading. It is vital to note, that when ankle rocker is less than 90  degrees (less than 90 degrees of ankle dorsiflexion is available), knee hyperextension is a viable strategy to progress forward over the ankle in the sagittal plane.  But in this scenario, the posterior shear capabilites of the gastrocnemius are brought to the front of the line as a frequent strategy.  And not a good one for the menisci we should mention.

Just some random thoughts for you today. We used to play such mental games during my orthopedic residency. The “what would happen if” scenarios. They stimulate thought, dialogue and debate and get the brain thinking more globally.  We hope you enjoyed the circus show today !

Shawn and Ivo…….. the gait guys

Andrews J G (1982)  On the relationship between resultant joint torques and muscular activity  Med Sci Sports Exerc  14: 361-367.

Andrews J G (1985)  A general method for determining the functional role of a muscle  J Biomech Eng  107: 348-353.

Bobbert MF, van Soest AJ (2000) Two-joint muscles offer the solution - but what was the problem? Motor Control 4: 48-52 & 97-116.

Gregor, R.J., Cavanagh, P.R., & LaFortune, M. (1985). Knee flexor moments during propulsion in cycling—a creative solution to Lombard’s Paradox. Journal of Biomechanics, 18, 307-16 .

Ingen-Schenau GJv (1989) From rotation to translation: constraints on multi-joint movement and the unique action of bi-articular muscles. Hum. Mov. Sci. 8:301-37.

Lombard, W.P., & Abbott, F.M. (1907). The mechanical effects produced by the contraction of individual muscles of the thigh of the frog. American Journal of Physiology, 20, 1-60.

Mansour J M & Pereira J M (1987)  Quantitative functional anatomy of the lower limb with application to human gait  J Biomech  20: 51-58.

Park S, Krebs DE, Mann RW (1999) Hip muscle co-contraction: evidence from concurrent in vivo pressure measurement and force estimation. Gait & Posture 10: 211-222.

Rasch, P.J., & Burke, R.K. (1978). Kinesiology and applied anatomy. (6th ed.). Philadelphia: Lea & Febiger.

Visser JJ, Hoogkamer JE, Bobbert MF & Huijing PA (1990) Length and Moment Arm of Human Leg Muscles as a Function of Knee and Hip Angles. Eur. J Appl Physiol 61: 453-460.

Zajac FE & Gordon MF (1989) Determining muscle’s force and action in multi-articular movement  Exerc Sport Sci Revs  17: 187-230.

Zajac FE, Neptune RR, Kautz SA (2003) Biomechanics and muscle coordination of human walking - Part II: Lessons from
dynamical simulations and clinical implications, Gait & Posure 17 (1): 1-17.