Balance..

Footnotes 7 - Black and Red.jpg

Did you know that the posterior spinocerebellar tract is essential for normal gait? It receives information from ALL muscle spindles, Golgi tendon organs and joint mechanoreceptors and coordinates them not only with the cerebellum but also with the vestibular system. Abnormalities within this system are present (but perhaps not apparent) all gait pathologies.

Needling Myofascial Meridians?

15079418828_c1a437b173_b.jpg

Beyond the Trigger Point...

Many clinicians needle. We are taught to dry needle trigger points and to needle the segmental innervation of the muscle involved. But should we do more? I think so, and here is one paper on incorporating needling myofascial meridians along with trigger points that supports that notion (1).

Since most of us treat patients that are ambulatory, we should be thinking of how a patient moves, especially through the gait cycle. Think of the kinetic chain in what I like to call “reverse engineering”, that is, from the ground up, rather from the torso down, in a closed chain fashion. This will profoundly effect the way you look at muscle function, for example: thinking of the vastus lateralis as a medial rotator of the thigh (yes, you read that right; think about it and try and get your head wrapped around it), or of the peroneus longus as an abductor of the lower leg and external rotator (assisting supination) during the latter half of the gait cycle. Reverse engineering gives you a whole new outlook on locomotion and human movement.

Tom Myers was insightful enough to write a great text talking about myofascial meridians or “lines of tissue stress ” describing the fascial connections of muscles utilized in a chain during movement (2). This built upon the original work of Valdimir Janda and his concepts of “loops and slings” (3), as well as the work of Paoletti (4) and Vleeming (5). 

In neurology, we have the conjoint concepts of temporal and spacial summation that can lead to some action on the part of the nervous system. They describe 2 ways that receptors or neurons can reach threshold and fire an action potential (6) .

Temporal summation is when a receptor or neuron is stimulated repetetively over time, with each potential bulding upon the previous, making the stimulus effectively larger and larger. If you were in a movie theater and the person seated behind you kept hitting the back of your seat repetitively (temporal summation), it would only be a matter of time before you turned around and said some thing to them(ie, you reached threshold).

Spacial summation is when a receptor or neuron is stimulated at multiple locations over time, with the potentials building and bringing the receptor or neuron closer to threshold.  Taking the same scenario as before, if many people began hitting your chair from multiple directions (spacial summation), it would be only a matter of time before you said something (ie: reached threshold).

These two things can work together as well, usually eliciting a result much faster, since the receptor or neuron is being hit multiple times from multiple directions and it can usually reach threshold faster.

Since one of our goals in needling is not only to reduce or eliminate the trigger point, but also to reduce pain and increase function, wouldn’t it make sense to take advantage of as much neurology as possible? How about more real estate (spacial summation) in a reasonable time frame from point to point (temporal summation)?

Needling appears to cause pain modulation, as well as many of its other effects,  through both peripheral and central mechanisms (7,8). Having our therapy stimulate more of these mechanisms should theoretically make our therapy more effective and improve outcomes. So, more needles may be a good thing, no? 

Getting back to the paper (1), they needled tender points (satellite trigger points?) along the lower portions of the “superficial back line” or “SBL”, along with points on the foot for plantar fascitis. The SBL contains plantar fascia, Achilles tendon, gastrocnemius,hamstrings, sacrotuberous ligament, and erector spinae. It continues to the suboccipital muscles and ends at the suboccipital muscles, galea aponeurotica of the skull and ultimately the frontalis muscle (2). They could have incorporated more, and perhaps had even better results, as the upper cervial spine contains one of the highest densities of mechanoreceptors in the body (9, 10), and afferent information from the upper 4 cervical neuromeres feed directly into the flocculonodular lobe of the cerebellum (11, 12).

So, how about incorporating myofascial meridians into your needling toolbox? The next time you see someone with a problem area, think about the kinetic chain that gets you there, starting from the ground up, and incorporate THAT into your treatment protocol. 

 

references:

1. Akhbari B, Salavati M, Ezzati K,  Mohammadi Rad S: The Use of Dry Needling and Myofascial Meridians in a Case of Plantar Fasciitis Journal of Chiropractic Medicine (2014) 13, 4348

2. Myers TW. Anatomy trains: myofascial meridians for manual and movement therapists. 2nd ed. Philadelphia: Churchill Livingstone; 2009.

3. Janda V, Vavrova M, Hervenova A, et al. Sensory motor stimulation. In: Liebenson C. ed Rehabilitation of the spine: a practitioners manual. 2nd edn. Lippincott Williams & Wilkins, 2006.

4. Paoletti S. The fasciae: anatomy, dysfunction & treatment. Eastland Press; 2006.

5. Vleeming A, Snijders C, Stoeckart R, Mens J. The role of the sacroiliac joins in coupling between spine, pelvis, legs and arms. In: Vleeming A, et al, editor. Movement, stability and low back pain. Churchill Livingstone; 1997. p. 5371

6. Levin & Luders (2000). Comprehensive Clinical Neurophysiology. New York: W.B. Saunders Company.

7. Dommerholt j Dry needling — peripheral and central considerations Journal of Manual and Manipulative Therapy 2011 VOL. 19 NO. 4 223-237

8.  Li-Wei Chou,  Mu-Jung Kao, Jaung-Geng Lin  ProbableMechanisms of Needling Therapies for Myofascial Pain Control Evidence-Based Complementary and Alternative Medicine Volume 2012, Article ID 705327, 11 pages doi:10.1155/2012/705327

9. Kulkarni V1, Chandy MJ, Babu KS  Quantitative study of muscle spindles in suboccipital muscles of human foetuses. Neurol India. 2001 Dec;49(4):355-9

10. Bogduk N Cervicogenic headache: anatomic basis and pathophysiologic mechanisms. Curr Pain Headache Rep. 2001 Aug;5(4):382-6.

11.   Luan H1, Gdowski MJ, Newlands SD, Gdowski GT  Convergence of vestibular and neck proprioceptive sensory signals in the cerebellar interpositus. J Neurosci. 2013 Jan 16;33(3):1198-210a. doi: 10.1523/JNEUROSCI.3460-12.2013.

12.  Seaman D Winterstein  Dysafferentation:   A Novel Term to Describe the Neuropathophysiological Effects of  Joint Complex Dysfunction. A Look at Likely Mechanisms of Symptom Generation  J Manipulative Physiol Ther 1998 (May);   21 (4):   267-280

Lets take another look at the tibialis posterior

As cinincians , we often needle and treat the tibialis posterior for posterior tibial tendon dysfunction, platar fasicits, patellofemoral joint pain, and a host of other conditions. Lets take a look at some of the anatomy and see why it is a big player in these conditions. 

The tibialis posterior takes its origin from the proximal posterior tibia, fibula and interosseous membrane. It is deep to the tricep surae and more superior than the flexors hallucis and didgitorum longus. The tendon descends medially, travels around the medial malleolus and divides into 3 portions: plantar, main and recurrent components. It inserts into all the tarsals and metatarsals 2-4.(1) Note that it DOES NOT insert into the 1st metatarsal. There must be a good reason for this, no?

The tibialis posterior acts to plantar flex and invert the foot as well as help eccentrically control eversion of the foot. It fires from initial conact to almost terminal swing. This assists in plantart flexion of the foot from initial contact to loading response, eccentric slowing of the foot during pronation from loading response to misdstance and concentric contraction to assist in and speed up supination from midstance to terminal stance.  When you look at the EMG studies for walking (2,3) , you will see that it starts ramping down activity just after midstance as the peroneus longus starts to ramp up more (firing from just after loading response to pre swing, with a bust of activity from midstance on). 

So, with all this talk, there has to be a reason, right? Think about this. In order to move forward in the gravitational plane and have high gear push off (ie, pushing off the base of the hallux), the 1st ray needs to descend to gain purchase on the ground (2,4, 5) . This is largely through the actions of the peroneus longus, extensor hallucis brevis and flexor digitorum brevis (6,7). The function of the peroneus longus should be obvious with its attachment to the base of the 1st metatarsal. The extensor hallucis brevis moves the axis of the 1st MTP downward when it contracts, as discussed here and here (8, 9). The flexor digitorum brevis moves the axis of metatarsalphalangeal joints 2-5 dorsally and posterior which effectively moves the axis of the head of the 1st metatarsal phalangeal joint ventral and anteriorly. This is requisite for you to have adequate hallux dorsiflexion of about 60 degrees to toe off normally. 

OK, so what about the tibialis posterior? 

Remember that the tib posterior attaches to most of the proximal bottom of the foot with the exception of the 1st metatarsal base? In the area of the 1st ray, the tib posterior attaches to the navicular. When it contracts, it will pull the navicular posterior and inferior, effectively rasing the base of (and lowering the head of) the 1st metatrsal. If it attached to the 1st metatarsal, its base would be pulled posterior and inferior which would raise the head of the 1st ray, exactly what we are trying NOT TO DO

Armed with this clinical tidbit, can you see how posterior tibial tendon dysfunction can be involved with so many foot and therefore lower kinetic chain problems? If you can’t descend the 1st ray, the foot will need to toe off its lateral aspect, with less effectiveness of the calcaneocuboid locking mechanism (more on that here (10) and here (11)), so problems with propulsion off of an “unlocked” foot. Can you see how the forefoot may be somewhat more everted in this situation? Can you see how this would contribute to more calcaneal eversion and sustained midfoot pronation from midstance through the rest of the gait cycle?  What muscle is sitauted to help maintain the arch as well as decelerate pronation? Tibialis posterior. What muscle will be called into play to assist the gastroc/soleus to help propel you forward? Tibialis posterior. You get the picture.

The tibialis posterior. An important player in the gait game. A great muscle to needle thatpays clinical dividends in more ways than you can imagine. 


1. Bubra PS, Keighley G, Rateesh S, Carmody D. Posterior Tibial Tendon Dysfunction: An Overlooked Cause of Foot Deformity. Journal of Family Medicine and Primary Care. 2015;4(1):26-29. doi:10.4103/2249-4863.152245.

 2. Michaud T. Foot Orthoses and Other Forms of Conservative Foot Care. Thomas Michaud Newton, MA 1993

3. ValmasseyR. Clinical Biomechanics of the lower extremities. Mosby, St Louis, Philadelphia. 101-107: 1996

4. Inman VT, Ralston HJ, Todd F. Human Walking. Baltimore, Williams and Wilkins, 1981

5. Scranton PE, et al. Support phase kinematics of the foot.  In Bateman JE, Trott AW (eds). The Foot and Ankle. New York, Thieme-Stratton, 1980

6. Perry J. Gait Analysis: Normal and Pathological Function. Thorofare, NJ, Slack 1992

7. The Pathokinesiology Service and the Physical Therapy Department. Observational Gait Analysis. Rancho Los Amigos National Rehabilitation Center Downey, CA 2001

8. https://tmblr.co/ZrRYjxFOn2hk

9. https://tmblr.co/ZrRYjxFSJ4Yz

10. https://tmblr.co/ZrRYjx1MjeIVN

11. https://tmblr.co/ZrRYjxToM8SI

Great, FREE FULL TEXT article on the hip.an EXCELLENT review with some great rehab tips at the conclusion like this“Once isolated contraction of the deep external rotator musclesis successfully achieved, progression can be made to therehabilitation …

Great, FREE FULL TEXT article on the hip.

an EXCELLENT review with some great rehab tips at the conclusion like this

“Once isolated contraction of the deep external rotator muscles
is successfully achieved, progression can be made to the
rehabilitation of secondary stabilisers and prime movers of the
hip, particularly the gluteus maximus, initially using nonweight
bearing exercises and progressing to weight bearing
exercises once motor control and strength allows. Pre-activation
of the deep external rotators may make these exercises
more effective. Deficits in flexibility and proprioception
should also be addressed at this stage. Once adequate hip muscle
strength and endurance is achieved, functional and sports
specific exercises can then be implemented. ”

Can local muscles augment stability in the hip?: A narrative literature review T.H. Retchford, K.M. Crossley, A. Grimaldi , J.L. Kemp, S.M. Cowan J Musculoskelet Neuronal Interact 2013; 13(1):1-12

http://www.ismni.org/jmni/pdf/51/01RETCHFORD.pdf

image from: https://www.researchgate.net/…/258427127_fig12_Fig-11-Anato…

tumblr_o0lgqlWE1s1qhko2so1_1280.jpg
tumblr_o0lgqlWE1s1qhko2so2_r1_1280.jpg

Why don’t some folks pay attention to anatomy?

Movement isn’t important…until you can’t…

Grey Cook

Manipulation of a joint appears to change the instantaneous axis of rotation of that joint (1). It would stand to reason that this change would effect muscle activation patterns (2). Can this be applied to the lower extremity? Apparently so, at least according to this paper (3). 

“…The distal tibiofibular joint manipulation group demonstrated a significant increase (P<.05) in soleus H/M ratio at all post-intervention time periods except 20 min post-intervention (P=.48). The proximal tibiofibular joint manipulation and control groups did not demonstrate a change in soleus H/M ratios. All groups demonstrated a decrease (P<.05) from baseline values in fibularis longus (10-30 min post-intervention) and soleus (30 min post-intervention) H/M ratios. Interventions directed at the distal tibiofibular joint acutely increase soleus muscle activation.”

So, what does this mean?

The peroneus longus contracts from just after midstance to pre swing to assist in descending the 1st ray and assist in supination. The soleus contracts from loading response (medial portion, eccentrically, to slow calcaneal eversion) until just after midstance (to assist in calcanel inversion and supination). 

The tibiofibular articulation is a dynamic structure during gait, and the fibula appears to move downward during the stance phase of gait (rather than upward, as previously thought from cadaver studies)(4), with the distal articulation having a rotational moment (5). 

Consider checking the integrity of these joints, and asuring their proper ranges of motion, particularly in patients with chronic ankle instability (6). A little joint motion can go a long way : ) 


1. The Effect of Lateral Ankle Sprain on Dorsiflexion Range of Motion, Posterior Talar Glide, and Joint LaxityCraig R. Denegar, Jay Hertel, Jose FonsecaJournal of Orthopaedic & Sports Physical Therapy 2002 32:4, 166-173 

2. Decrease in quadriceps inhibition after sacroiliac joint manipulation in patients with anterior knee painSuter, Esther et al.Journal of Manipulative & Physiological Therapeutics , Volume 22 , Issue 3 , 149 - 153

3. Immediate effects of a tibiofibular joint manipulation on lower extremity H-reflex measurements in individuals with chronic ankle instability.Grindstaff TL, Beazell JR, Sauer LD, Magrum EM, Ingersoll CD, Hertel JJ Electromyogr Kinesiol. 2011 Aug;21(4):652-8. doi: 10.1016/j.jelekin.2011.03.011. Epub 2011 May 4.

4.  Dynamic function of the human fibula. Weinert, C. R., McMaster, J. H. and Ferguson, R. J. (1973), Am. J. Anat., 138: 145–149. doi: 10.1002/aja.1001380202

5. Kinematics of the distal tibiofibular syndesmosisAnnechien Beumer , Edward R Valstar , Eric H Garling , Ruud Niesing , Jonas Ranstam , Richard Löfvenberg , Bart A Swierstra  Acta Orthopaedica Scandinavica  Vol. 74, Iss. 3, 2003

6. Effects of a Proximal or Distal Tibiofibular Joint Manipulation on Ankle Range of Motion and Functional Outcomes in Individuals With Chronic Ankle InstabilityJames R. Beazell, Terry L. Grindstaff, Lindsay D. Sauer, Eric M. Magrum, Christopher D. Ingersoll, Jay HertelJournal of Orthopaedic & Sports Physical Therapy 2012 42:2, 125-134 

Previously unreleased Video Available for download

&ldquo;Performance Theories: Dialogues on Training Concepts&rdquo;
How about some one on one with Shawn and Ivo? Hear our thoughts on:


• What is the definition of the core and what does it entail…

Previously unreleased Video Available for download


“Performance Theories: Dialogues on Training Concepts”

How about some one on one with Shawn and Ivo? Hear our thoughts on:

• What is the definition of the core and what does it entail ?

• Physiologic overflow of muscles with respect to joint motion

• Isotonic Exercise concepts

• Physiologic characteristics of muscle types

• Strength Training: Neural Adaptation

• Motor Pattern Muscle Compensation Concepts

• Exercise Prescription Concepts

• Hip Extension Motor Pattern: A discussion on compensations

• Neurologic Reciprocal Inhibition: Principles of joint movement and stability

• The Concept of Tight and Short Muscles: They are different

• Stretching: Good or Bad?

We tackle the tough questions and provide real world answers.  An hour packed with hours worth of information! Download your copy here from Payloadz.

all material copyright 2009 The Homunculus Group/ The Gait Guys. All rights reserved.

tumblr_mee1niiIs01qhko2so1_1280.jpg
tumblr_mee1niiIs01qhko2so2_1280.jpg
tumblr_mee1niiIs01qhko2so3_1280.jpg

Shoe News You can Use…

The Heel Counter- the back of the upper

This is the back of the shoe that offers structure (just squeeze the back of a shoe. this is the rigid part you feel between your thumb and 1st finger, unless of course, you are using your teeth). This is often part of or integrated with the upper.

A strong, deep heel counter with medial and lateral support is important for motion control; It offers something for the calcaneus (heel bone) to bump up against when as it is everting (moving laterally) during pronation. Look at folks that have a bump on the outside of their heel (particularly the ladies(sorry, true); this is often called a “pump bump”). Now look at the inside of their shoes. See that worn away area on the inside of the back of the shoe? Now you know where that worn away area is coming from!

Lateral support especially for people who invert a great deal or when you’re going to place an orthotic in the shoe which inverts the foot a great deal.  The lateral counter provides the foot (or orthotic) something to give resistance against.  The lateral counter needs to extend at least to the base of the fifth metatarsal, otherwise it can affect the foot during propulsion. A deep heel pocket in the shoe helps to limit the motion of the calcaneus and will also allow space for an orthotic. The heel counter should also grip right above the calcaneus, hugging the Achilles tendon.

We know you want to know more. We can help. Take the National Shoe Fit Certification Program. If you like, sit for the exam and get certified as well. Email us for details thegaitguys@gmail.com

The Gait Guys. We’re your heel counter!


all material copyright 2012 The Homunculus Group/ The Gait Guys. All rights reserved. If you want to use our stuff, please ask. If not, Captain Cunieform may pay you a visit…

tumblr_mdycul6PpX1qhko2so1_1280.jpg
tumblr_mdycul6PpX1qhko2so2_1280.jpg

Shoesday Tuesday:


Shoe News You Can Use: The Shank

Look at the “skeleton” in the photo on the left. Now look at the black material above the white area of the midsole (above the outsole) on the right. This is the “shank” of the shoe. The shank is the stiff area of the shoe between the heel to the transverse tarsal joint. It should correspond to the medial longitudinal arch of the foot. It is designed (along with the midsole material: see post here), to provide additional torsional rigidity to the shoe and helps to limit the amount of pronation and motion at the subtalar and mid tarsal joints. It also acts as a “plate” between the outsole and ininsole to provide protection to the foot from rocks, sticks, broken glass, shrapnel and small animals : ).


Not all shoes have a shank, so it may not always be present. We usually dissect shoes sent to us so we can see what they are all about if the manufacturer or rep is unable to provide us with an “exploded” or sectioned model. Look for our take on the new SKORA soon, complete with a dissected version!


The Gait Guys. Making sure you know what you need to so you can make more educated decisions




all material copyright 2012 The Homunculus Group/ The Gait Guys. Please ask to use our stuff. If you don’t, you have to deal with Lee. You don’t want to deal with Lee….