tumblr_oa5thqROml1qhko2so1_1280.jpg
tumblr_oa5thqROml1qhko2so2_1280.jpg
tumblr_oa5thqROml1qhko2so3_1280.jpg
tumblr_oa5thqROml1qhko2so4_1280.jpg

 Why does this gal have so much limited external rotation of her legs? 

 We have discussed torsions and versions here on the blog many times before. We rarely see femoral antetorsion. She came in to see us with the pain following a total hip replacement on the right.

 Note that she has fairly good internal rotation of the hips bilaterally but limited external rotation. This is usually not the case, as most folks lose internal rotation. We need 4 to 6° internal and external rotation to walk normally. This poor gal has very little external rotation available to her.

Have you figured out what’s going on with hips yet? She has a condition called femoral ante torsion.   This means that the angle of the femoral neck is in excess of 12°. This will allow her to have a lot of internal rotation but very little external rotation.  She will need to either “create” or “borrow” her requisite external rotation from somewhere. In this case she decreases her progression of gait (intoed), and borrows the remainder from her lumbar spine.

 So what do we do? We attempt to create more external rotation. We are accomplishing this with exercises that emphasize external rotation, acupuncture/needling of the hip capsule and musculature which would promote external rotation (posterior fibers of gluteus medius,  gluteus maximus, vastus medialis, biceps femoris). A few degrees can go a very long way as they have in this patient. 

confused? Did you miss our awesome post on femoral torsions: click here to learn more.

If you create it, they may not come....

Range of motion that is…..

We can’t tell you how many times we see an aberrant movement pattern or lack of a range of motion during gait (such as ankle rocker or hip extension), only to test them on the table later to find that they have that range of motion available to them, but for some reason they choose to NOT use it.

 Yes, range of motion IS very important; but if you have the range and don’t use it; it most certainly will be taken away from you and the resources used elsewhere. You need to know what you are doing and how to do it. Then be able to do it over time, time and time again and finally, able to do it with a load (your body weight +).

 Just because you increase someone’s range of motion, does not mean they will be able to incorporate that range of motion into a movement pattern, or compensation pattern for that matter. It is only ¼ of the equation: Range of Motion,  Skill (or proprioception),  endurance (or the proportion of slow twitch muscle) and strength (the proportion of fast twitch muscle). 

 Here is an article that supports this notion, by one of our favorite authors; Dr Stu McGill.

The Gait Guys. Taking you to where the rubber meets the road (because some of you are gluten intolerant and therefore separating the wheat from the chaff is not an option). 


Improvements in Hip Flexibility Do Not Transfer to Mobility in Functional Movement Patterns

Moreside, Janice M.1; McGill, Stuart M.2

Abstract: Moreside, JM and McGill, SM. Improvements in hip flexibility do not transfer to mobility in functional movement patterns. J Strength Cond Res 27(10): 2635–2643, 2013—The purpose of this study was to analyze the transference of increased passive hip range of motion (ROM) and core endurance to functional movement. Twenty-four healthy young men with limited hip mobility were randomly assigned to 4 intervention groups: group 1, stretching; group 2, stretching plus hip/spine disassociation exercises; group 3, core endurance; and group 4, control. Previous work has documented the large increase in passive ROM and core endurance that was attained over the 6-week interventions, but whether these changes transferred to functional activities was unclear. Four dynamic activities were analyzed before and after the 6-week interventions: active standing hip extension, lunge, a standing twist/reach maneuver, and exercising on an elliptical trainer. A Vicon motion capture system collected body segment kinematics, with hip and lumbar spine angles subsequently calculated in Visual 3D. Repeated measures analyses of variance determined group effects on various hip and spine angles, with paired t-tests on specific pre/post pairs. Despite the large increases in passive hip ROM, there was no evidence of increased hip ROM used during functional movement testing. Similarly, the only significant change in lumbar motion was a reduction in lumbar rotation during the active hip extension maneuver (p < 0.05). These results indicate that changes in passive ROM or core endurance do not automatically transfer to changes in functional movement patterns. This implies that training and rehabilitation programs may benefit from an additional focus on grooving new motor patterns if newfound movement range is to be used.

tumblr_miivgh6NpC1qhko2so1_1280.jpg
tumblr_miivgh6NpC1qhko2so2_1280.png

Yes, we are all twisted. Part 3 continued.

If you missed yesterdays post, this one will make more sense if you go back and read it.Today we talk about compensations for tibial torsions.

As discussed in previous posts, there are at least 3 reasons we need to understand  tibial torsions and versions:

1. They will often alter the progression angle of gait.  In internal tibial torsion, there will often be a decreased progression angle of the foot and with external, an increased angle of progression. A decreased progression angle is often associated with a decreased step width whereas an increased angle is often associated with an increased step width.

2. They affect available ranges of motion (ROM) of the limb. We remember that the lower leg needs to internally rotate the requisite 4-6 degrees from initial contact to midstance:

ROM changes that may occur with internal tibial torsion

  • If it is already fully internally rotated (as it may be with internal tibial torsion), that range of motion must be created or compensated for elsewhere.
  • This can result in external rotation of the affected lower limb to create the range of motion neede
  • Circumduction of the lower limb, because the foot is already in a supinated posture, and the decreased range of motion of the foot needs to be compensated for.
  • A shortened step length, due to increased compressive forces at the medial knee
  • And alteration of vertical and medial lateral ground reactive forces
  • A rolling off the lateral aspect of the foot, due to it being in a more supinated posture

ROM changes that may occur with external tibial torsion          

  • external tibial torsion often results in the increased midfoot pronation, through the deformity, because more range of motion is possible both at the hip and foot at the subtalar joint

3. They often can effect the coronal plane orientation of the lower limb.

In internal tibial torsion, due to the foot being more rigid and the deformity often being accompanied by increased tibial varum, the knee often falls outside the plane of the foot (rather than being “stacked”), resulting in a decreased step width and often a cross over gait pattern (click here for more info on crossover)

In external tibial torsion, the foot is often more pliable. This often results in an increased step width and well as the knee falling inside (or medially) to the plane of the foot. Because of the increased hip and foot ranges of motion available,  the foot is not an adequate lever, shortening step length and sometimes requiring increased pelvic motion to “get around” the stance phase leg.

Whew! This stuff can be tough, Thanks for hanging in there! Next stop: Femoral Torsions and Versions!

Ivo and Shawn; your torsioned friends : )

 

All material copyright 2013 The Gait Guys/ The Homunculus Group. All rights reserved.  Ask before you lift our stuff, Lee is watching……