In the vein of patello femoral pain
/Have you thought about the popliteus and its function for recalcitrant paella femoral pain? here we discuss some of the finer points of this often over utilized and under treated muscle
Have you thought about the popliteus and its function for recalcitrant paella femoral pain? here we discuss some of the finer points of this often over utilized and under treated muscle
While at a recent soccer game, I noticed this gal standing on the side lines. Talk about knee problems waiting to happen ! Note the hyperextended posture of the knees with increase in lumbar lordosis and anterior carriage of the entire pelvis with an increase in the thoracic kyphosis and head forward carriage to match! You can imagine the anterior pelvic tilt as well as stretch weakness of the abdominal obliques creating "core instability". At least she is not wearing heels, although a negative inclination [negative ramp delta] shoe would probably help.
Think of the strain on her poor posterior cruciate ligaments with all of that anterior femoral translation! We remember that the popliteus acts as an "accessory PCL" at initial contact in the gait cycle. It fires at heel strike and again from loading response until toe off
Think about the forces on these knees while descending hills or stairs. The momentum will carry the femur forward (or anteriorly). There needs to be something to reststrain this; enter the PCL. Because of the laxity (and instability), the poplitues will need to fire to take up the slack. We wrote about that here and here.
Note, this is a mere thought experiment, don’t get bent outta shape, these things might not occur, or they might. Time will tell.
Go ahead, take the shot.
This runner came in with ankle pain after running across the slope of the hill with the right foot uphill left foot down. She slipped on the ice and heard a pop. She presented to the office with minimal swelling, ankle pain on the right-hand side. Very little discoloration. She said that her ankle was “bent sideways” but reduced overtime as she crawled home to get help.
She slipped on the ice and heard a pop. She presented to the office with minimal swelling, ankle pain on the right-hand side. Very little discoloration. She said that her ankle was “bent sideways” but reduced overtime as she crawled home to get help.
The ankle was moderately swollen and tender at the medial and lateral malleoli with little gross deformity. She was not able to bear weight on that side without pain. We took the first picture (top) which didn’t look too bad. We could’ve stopped there thinking that it was just a bad sprain. But we didn't… We always take three views of an area so we don’t miss things. You can plainly see in the second and third views that she has involvement of the deltoid ligament as well as the more obvious distal fibula fracture.
We did some acupuncture to do reduce swelling at the patient’s request and contacted the orthopedists office for her, placed her in the mobilization brace and give her some crutches.
When in doubt, take the shot. It can make a huge difference clinically.
Proof that women are not unstable at the time of menstruation.
On the subject of proprioception, here is something we found interesting while on a quest for another article. 1st, we had found an article in the NY Times blog, talking about training considerations of women during their monthly cycle.
They state: “There may, however, still be reasons a woman to consider her period when planning training. A study published this year by scientists at the University of Melbourne in Australia, for instance, found that when women’s estrogen levels were at their highest, around the time of ovulation, they landed subtly differently while hopping than at other times of the month. Their feet splayed, the arch collapsing just a little bit more than it did when their estrogen levels were lower. The women also seemed, to a small degree, wobblier. “We contend that the changes in foot biomechanics may be due to the effects of estrogen on soft tissue and/or the brain,” said Adam Leigh Bryant, a senior lecturer at the University of Melbourne and lead author of the study.”
This says, in a nutshell, that women are not unstable around the time of menstruation (dispelling many common myths to the contrary) but rather, they are unstable around the time of their ovulation (proprioceptively speaking, of course). Women on monophasic contraceptives showed less variability (greater stability) and therefore may be more less injury prone.
Of course we pulled the study (abstract below). We found it interesting that it may actually be a neurological/cortical phenomenon, rather that muscle estrogen receptor based. What is the advantage of less proprioceptive awareness with increased estrogen levels? Maybe (in a bit of a stretch), it was for propagation of the species. If the women can’t get away, then they are more likely to be caught (or less likely to be able to run…)
The Gait Guys….Sifting through the literature and sometimes poking a little fun at it.
Ivo and Shawn.
http://www.ncbi.nlm.nih.gov/pubmed/20857138
Centre for Health, Exercise and Sports Medicine, School of Physiotherapy, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia. albryant@unimelb.edu.au
Estrogen receptors in skeletal muscle suggest a tissue-based mechanism for influencing neuromuscular control. This has important physiological implications for both eumenorrheic women with fluctuating estrogen levels and those with constant and attenuated estrogen levels, i.e., women using the monophasic oral contraceptive pill (MOCP). This study examined the effects of endogenous plasma estrogen levels on leg stiffness (K (LEG)) and foot center of pressure (COP) during hopping. Nineteen females (Age = 28.0 ± 4.2 years, Ht = 1.67 ± 0.07 m, Mass = 61.6 ± 6.8 kg) who had been using the MOCP for at least 12 months together with 19 matched, female, non-MOCP users (Age = 31.9 ± 7.3 years, Ht = 1.63 ± 0.05 m, Mass = 62.5 ± 5.9 kg) participated. Non-MOCP users were tested at the time of lowest (menstruation) and highest (≈ ovulation) estrogen whilst MOCP users were tested at Day 1 and Day 14 of their cycle. At each test session, K (LEG) (N m(-1) kg(-1)) and foot COP path length (mm) and path velocity (mm s(-1)) were determined from ground reaction force data as participants hopped at 2.2 Hz on a force plate. Statistical analysis revealed no significant (p < 0.05) differences for K (LEG). In contrast, significantly higher COP path length (30%) and COP path velocity (25%) were identified at ≈ ovulation compared to menstruation in the non-MOCP users. Whilst there was no evidence of an estrogen-induced effect on K (LEG); significantly elevated estrogen at ≈ ovulation presumably increased extensibility of connective tissue and/or diminished neuromuscular control. Consistent lower limb dynamics of MOCP users demands less reliance on acutely modified neuromuscular control strategies during dynamic tasks and may explain the lower rate of lower limb musculoskeletal injuries in this population compared to non-MOCP users.
“There may, however, still be reasons a woman to consider her period when planning training. A study published this year by scientists at the University of Melbourne in Australia, for instance, found that when women’s estrogen levels were at their highest, around the time of ovulation, they landed subtly differently while hopping than at other times of the month. Their feet splayed, the arch collapsing just a little bit more than it did when their estrogen levels were lower. The women also seemed, to a small degree, wobblier. “We contend that the changes in foot biomechanics may be due to the effects of estrogen on soft tissue and/or the brain,” said Adam Leigh Bryant, a senior lecturer at the University of Melbourne and lead author of the study.”
OUR SEARCH BOX IS INTUITIVE, TYPE IN YOUR KEY WORD, WAIT, THEN SCROLL DOWN.
Email us: our email is found under the "Disclaimer" Tab above.
Powered by Squarespace.