Unique adaptations to arm swing challenges: the one armed runner. Welcome to Luke Ericson, an amazing athlete, and man

Luke Ericson is tough as nails.

Human gait is cyclical. For the most part, when one limb is engaged on the ground (stance phase), the other is in swing phase. Before I continue, you should recall that there is a brief double limb support phase in walking gait, that which is absent in running gait. Also, I wish to remind you of our time hammered principle that when the foot is on the ground the glutes are heavily in charge, and when the foot is in the air, the abdominals are heavily in charge.  

For one to move cleanly and efficiently one would assume that the best way to do that would be to ensure that the lower 2 limbs are capable of doing the exact same things, with the same timing, same skill, same endurance and same strength. This goes for the upper 2 limbs as well, and then of course the synchronizing of the 4 in a cohesive effort. For this clean seamless motor function to occur, one must assume that there would be no injuries that had left a remnant mark on one limb thus encouraging a necessary compensation pattern in that limb (and one that would then have to be negotiated with the opposite limb as well as the contralateral upper or lower limb).  

Removing a considerable mass of tissue anywhere in the body is going to change the symmetry of the body and require compensations. One can clearly see the effects of this on this athletes body in the video above. He even eludes to the fact that he has a scoliosis, no surprise there.  There is such an unequal mass distribution that there is little way the spine had any chance to remain straight.  Not only is this going to change symmetry from a static postural perspective (bulk, weight, fascial plane changes, strength etc) but it will change dynamic postural control, mobility and stability as well as dynamic spinal kinematics.  I have talked about this previously in a blog piece I wrote on post-mastectomy clients display changes in spatiotemporal gait parameter such as step length and gait velocity.

-mastectomy post: http://tmblr.co/ZrRYjx1XB8RhO

If you have been with The Gait Guys for awhile you will know that impairing an arm swing will show altered biomechanics in the opposite lower limb (and furthermore, if you alter one lower limb, you begin a process of altering the biomechanical function and rhythmicity of the opposite leg as well.) You can search the blog for “arm swing part 1 and part 2″ for those dialogues.

Arm swing impairment is a real issue and it is one that is typically far overlooked and misrepresented. The intrinsic effects of altering the body through subtraction of tissue are not all that dissimilar to extrinsic changes into the system from things like  walking with a handbag/briefcase, walking with a shoulder bag, walking and running with an ipod or water bottle in one hand. And do not forget other intrinsic problems that affect spinal symmetry, for example consider the changes on the system from scoliosis as in this case.  It can cycle back on its own feedback loop into the system, either consciously or unconsciously altering arm swing and thus global body kinematics.  

There is a reason that in our practices we often assess and treat contralateral upper and lower limbs as well as to address remnants from old injuries whether they are symptomatic or not. It all comes together for the organism as a concerted effort in optimal locomotion.

Here on TGG, and in dialogues with Ivo on our podcast, I have long talked about phasic and anti-phasic motions of the arms and shoulder-pelvic blocks during gait and locomotion/sport activity.  I have written several times about the effects of spine pain and how spine pain clients reduce the anti-phasic rotational (axial) nature of the shoulder girdle and pelvic girdle. In the video above, you can see anything but anti-phasic gait, to be clear, this is a classic representation of a phasic gait. The shoulder block and the pelvic block show little if any counter rotation, they are linked together which is not normal gait. Furthermore, if you look carefully, the timing of the right arm swing is variable and cyclically changing in its timing with the left leg. Look carefully, you will see the cyclical success and failure at the beginning of the video.  This is pathologic gait, he must be constantly fighting frontal plane sway because there is no axial anti-phasic motion. He is also constantly fighting the unidirectional rotation that the absence of an entire limb and limb girdle is presenting, you can see him struggle with this if you have looked at enough gait samplings. There is essentially frozen torso movements.  Want to see more of our work on arm swing ? search the gait guys blog.

There is so much more here to discuss, so I will likely return to this video another time to delve into those other things on my mind. Luke is an amazing athlete, he gets much respect from me.

I hope this dialogue helps you to get a deeper grip on gait and gait problems. I have written many articles on the topics of arm swing, phasic and anti-phasic gait, central pattern generators. The are all archived here on the blog. I try to write a new original thought-process article each week for the blog amongst the other “aggregator” type stuff we share from other folks social media. My weekly article serves to go deeper into things, sometimes they are well referenced and in this case, I am basing today’s discussion on the referenced work in the other pieces I have written on arm swing, phasic and anti-phasic gait, central pattern generators etc. So please do your readings there before we begin debate or dialogue, which i always welcome !

Dr. Shawn Allen, the other gait guy

Don't coach arm swing.

We often say that arm swing should not be coached.
Here are some of our deeper thoughts as to why we stand firm on this.

Look at this photo, there are lots of different arm swings in every group of runners. These differences are not choices for the most part, the arms are just doing what they must, based off of many parameters in a runner, things that are working right, and not so right.

Screen Shot 2018-11-11 at 10.27.29 AM.png

To be more clear, aberrant arm swing is often a compensation to cope with other flawed mechanics elsewhere, things such as a weak core on one side, loss of thoracic lateral bend or rotation, altered limb stability patterns, hip stability challenges etc. Thus, it is almost foolish to change an arm swing that you do not like in you or your client, because often that is not the problem. Arm swing is a power producer, but it is also a huge ballast like appendage that is used to help maintain balance changes. So, look for all possible causes of what you so, that which looked aberrant, and fix those mechanical flaws first.

From Canton: "Current research has yet to determine how passive dynamics and active neural control contribute to upper limb swing during human locomotion. The present study aimed to investigate these contributions by restricting pelvis motion during walking, thereby altering the upward energy transfer from the swinging lower limbs."

Here at The Gait Guys we have discussed for years the principles of the antiphasic nature between the pelvis "girdle" and shoulder "girdles" in that they should move in opposite rotational planes, and yet be equal in their amplitude, and that when this occurs, arm and leg swings are mostly symmetrical, equal in amplitude and symmetrical in their swing planes. This study found that when the pelvis was restricted, that the ranges of motion of the shoulder and trunk, as well as the vertical trunk center of mass movement, were also reduced, as we have said many times in our writings and in quoting the research over the years. This study also supported our long standing position that arm swing is more of a passive phenomenon, yet with complex coupling of the upper and lower limb neural networks, but also strongly taking its queues from the trunk, pelvis and leg swing.

One final thought from us, coaches, especially sprint coaches, are still going to coach arm swing and force arm swing drills, the ones they want to see, to achieve more power. . . . sigh (we get it, speed is important, but there could be a cost to making the body do what is it naturally struggling to do cleanly). So, if you are going to employ these arm swing sprint drills, get someone to fix the aberrant patterns first, if you want to see fewer injuries. Otherwise, don't be surprised if you see in your runners more thoracic lean to one side, a head tilt to one side, athletes complaining of mid or low back or neck pain, tightness, shoulder pain and the list goes on. Forcing your desired coached arm swing pattern on a clients already compensated physiology may have some unwanted costs.
-Dr. Allen (of the gait guys)

From the -Canton and MacLellan paper:
"Relating shoulder muscle activities to upper limb kinematics suggested these muscles mainly acted eccentrically, providing evidence that passive elements are a significant factor in arm swing control. However, the conserved muscle activity patterns and temporal coupling of limb movements when pelvis motion was reduced are suggestive of an underlying active maintenance of the locomotor pattern via linked upper and lower limb neural networks."

Active and passive contributions to arm swing: Implications of the restriction of pelvis motion during human locomotion.Canton S1, MacLellan MJ2. Hum Mov Sci. 2018 Feb;57:314-323. doi: 10.1016/j.humov.2017.09.009. Epub 2017 Sep 25.

Dominance of the lumbosacral girdle over the cervicothoracic is probably preserved in humans

. . . dominance of the lumbosacral girdle over the cervicothoracic is probably preserved in humans
This suggests that arm swing is, to a notable degree, subservient to leg swing.

Research thus far has strongly suggested two pieces to arm swing, a passive and an active swing component. Without muscle activity, passive swing amplitude and relative phase decrease significantly. As phase decreases, it is referred to as in-phase swing pattern of the arms. The Goudriaan et al paper referenced below concluded that "muscle activity is needed to increase arm swing amplitude and modify relative phase during human walking to obtain an out-phase movement relative to the legs."
But it is more complicated that this . . . .

Research continues to suggest that interlimb coordination is achieved at the brainstem and cortical level, which this study suggests as to why we can dual task and walk with something in our hands, carry objects and even walk and run with said objects and changes in our gait . . . . because, the program is running off a top down neurologic mediated process with predictable, economically CPGs(central pattern generator) in place.
"The coordination of arm and leg movements takes the form of an in-phase relationship between diagonal limbs [64]. The dominance of the lumbosacral girdle over the cervicothoracic is probably preserved in humans as well. For example, Sakamoto et al. [65] showed that during combined arm and leg cycling, the cadence of the arms was significantly altered when leg cycling cadence was changed. The opposite, however, was not true, i.e. the arms did not affect the leg cadence."-Preece et al.

Human Movement Science 45 (2016) 110–118
The coordinated movement of the spine and pelvis during
running
Stephen J. Preece, Duncan Mason, Christopher Bramah
School of Health Sciences, University of Salford, Salford, Manchester M6 6PU, United Kingdom

Gait Posture. 2014 Jun;40(2):321-6. doi: 10.1016/j.gaitpost.2014.04.204. Epub 2014 May 6.
Arm swing in human walking: what is their drive? Goudriaan M1, Jonkers I2, van Dieen JH3, Bruijn SM4.

Coordination of leg swing, thorax rotations, and pelvis rotations during gait: The organisation of total body angular momentum

"In walking faster than 3 km/h, transverse pelvic rotation lengthens the step (“pelvic step”).
The shift in pelvis–thorax coordination from in-phase to out of phase with increasing velocity was found to depend on the pelvis beginning to move in-phase with the femur, while the thorax continued to counter rotate with respect to the femur. "

We are always trying to bring greater understanding to this group at TGG regarding gait mechanics. One must understand the implications of rotational work, and anti-rotational work on the phasic and antiphasic nature of the thorax and the pelvis. We have talked about becoming more phasic when there is spine pain. With today's study, we delve just al little deeper, particularly noting how the pelvis and the femur moving together first, before that is offset by the antiphasic nature of the thorax at higher speeds of gait.
This article uses the terms in phase and out of phase. We have learned over time that those terms to relate more so the description of how the limbs are, or are not, pairing up when a couple is walking together. None the less, the reader here should understand how they are referring to out of phase as antiphasic.

http://www.sciencedirect.com/…/article/pii/S096663620700135X

 

*Video Gait demo: The couple in the hats, are they in phase or out of phase?

*Video Gait demo: The couple in the hats, are they in phase or out of phase?
Have you ever wondered why people who walk together quickly synchronize their gaits ?

The synchronization between walking partners is more complex than it seems on the surface. There are two types of synchronization, in-phase (both person’s right foot move forward at the same time) and out-of-phase synchronization (where the right foot moves forward with the partners left foot). You can see in the video above that the couple has subconsciously fallen into an Out-of-Phase synchronization.

There are multiple factors and communication mechanisms occurring. There are auditory mechanisms in play such as the sound of the other persons foot fall. There are even visual mechanisms through peripherally seeing your partners arm swing and foot fall which encourages the imitation synchronization. However, the strongest in-phase synchrony occurred in the presence of tactile feedback meaning hand holding or embracing each others waist from behind, which couples often do when walking more slowly, seem to create a stronger synchrony. When this tactile component is engaged between two walkers it is plausible that the upper and lower limbs move more freely when paired up, particularly with arm swing.
Read on, there is more to it here in an post we did awhile back. . . . link below

https://thegaitguys.tumblr.com/post/29333686230/have-you-ever-wondered-why-people-who-walk

https://youtu.be/05XtMtap3Yg

Have you ever wondered why people who walk together quickly synchronize their gaits ?

From healthy heart cells that synchronize to a single beat, to women in school dormitories or work places who synchronize their menstrual cycles, to fireflies who begin blinking in synchrony when they all perch in the same tree synchronization is something that is abundant in nature.  It is no wonder that we find synchronicity in one of our most primitive and frequent motor patterns, walking together with someone shows the same synchronicity phenomenon.

Hold the hand of your favorite person and go for a walk. Within a few strides your gaits will synchronize. Is it because it is easier ? Is it because when synchronized the arm swings will match thus making it easier and more effortless to hold hands ?  Does the same effect occur if you are not holding hands ? Studies have concluded that although it does not happen all of the time, they found it occurs in almost 50% of the walking trials even among couples who do not usually walk together. This is far too high a percentage to not make it a statistically significant finding.

The synchronization between walking partners is more complex than it seems on the surface.  There are two types of synchronization, in-phase (both person’s right foot move forward at the same time) and out-of-phase synchronization (where the right foot moves forward with the partners left foot).  You can see in the video above that the couple has subconsciously fallen into an Out-of-Phase synchronization, then after the tide splash that throws them off within just a few steps they fall right back into Out-of-Phase synchronization and hold it in that state.  There are multiple factors and communication mechanisms occurring. There are auditory mechanisms in play such as the sound of the other persons foot fall.  There are even visual mechanisms through peripherally seeing your partners arm swing and foot fall which encourages the imitation synchronization. However, the strongest in-phase synchrony occurred in the presence of tactile feedback meaning hand holding or embracing each others waist from behind, which couples often do when walking more slowly, seem to create a stronger synchrony.  When this tactile component is engaged between two walkers it is plausible that the upper and lower limbs move more freely when paired up, particularly with arm swing.

What is thought to happen is that one partner dominates the lead in the gait, just as in dancing, one person is the leader and the other is the follower. The lead partner’s lower limbs determine the movement of their arms, which in turn when holding hands, sets the arm movement pattern in the partner then determining the leg swing and stance phases. Thus, synchrony is achieved. 

However, it is important to note that many of the studies were clear to mention that even in non-tactile cases, many of the gaits of two people walking together are synchronized. This was likely due to the visual and auditory parameters however height, leg length cadence etc could also play into those successful non-tactile synchrony cases.

These are interesting findings at 50% because it is very unlikely that any two people are of the same height, leg length, cadence, stride and step length.  These are all parameters that are likely to change the likelihood of gait synchrony.  Zivotofsky found that “even in the absence of visual or auditory communication, couples also frequently walked in synchrony while 180 degrees out-of-phase, likely using different feedback mechanisms”. The studies below discuss many issues of this synchrony but it is perhaps most significant in clinical rehabilitation cases or in early or moderately advanced movement impairment disorders and diseases these findings may partially explain how patients can enhance their gait function when they walk with a partner or therapist.  It is in these movement impairment syndromes and diseases where the central processing and Central Pattern Generators (CPG’s) are diseased leaving them with the need for other cues such as those discussed here today, auditory, visual and tactile. 

You may have read our previous blog articles on arm swing and how intimately they are anti-phasically (opposite) paired with lower limb swing.  But today’s blog post article took limb swing to another level.  Stay tuned for more on arm and leg swing in human movement.  If you wish to read our other works on arm and leg swing and their deeper effects on gait, go to our blog www.thegaitguys.tumblr.com and enter the words “arm swing” into the SEARCH box.

Shawn and Ivo…….. taking gait far beyond what you learned about it in school.
______

References used:


J Neuroengineering Rehabil. 2007; 4: 28. The sensory feedback mechanisms enabling couples to walk synchronously. An initial investigation.  Ari Z Zivotofsky and Jeffrey M Hausdorff  Published online 2007 August 8. doi:  10.1186/1743-0003-4-28

Hum Mov Sci. 2012 Jun 22. [Epub ahead of print] Modality-specific communication enabling gait synchronization during over-ground side-by-side walking. Zivotofsky AZ, Gruendlinger L, Hausdorff JM.Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel.

 

Arm Swing and dynamic stability of the system.

Screen Shot 2017-10-16 at 1.33.03 PM.png

We have discussed the arm swing issue so many times over the years that we have lost count. By many sources, arm swing is a product of lower limb action and a product of the effective, or ineffective, relationship between the shoulder "girdle" (maybe thoracic rotation component) and the pelvic girdle (lumbopelvic rhythm) during gait.  This is the concept of phasic and anti-phasic limb swing. If you want to dive into that, and you should if you are unfamiliar with the concept, you can look it up on our blog using the search box.  We are not to forget that the arms, and thus arm swing, is a major factor in maintaining balance. We have used the term "ballast" many times to describe the effects of arm swing, rotation, abduction, circumduction etc on assisting balance maintenance of the body during various locomotion strategies. These are largely subconscious actions, hence why we agree with the research suggesting that arm swing is secondary, compensatory, and takes its queues off of the activity of the lower limb motor actions. In essence, arm swing variants are necessary compensations to assist in maintaining things like balance, center of pressure, equilibrium and the like. 

In this recent 2017 study, we have another suggesting arm swings function in assisting, even improving, dynamic stability. We are reminded of MdGill's suggestion, and the concepts of phasic and antiphasic torso-pelvis counter rotational movements, of how spinal loads can be affected by changes or differences in arm position.  Even arm position changes in sitting and standing can alter spinal loads, so during movement it is a virtual guarantee. 

This study looked at "how arm swing could influence the lumbar spine and hip joint forces and motions during walking." In this study, the researchers had each subject perform walking with different arm swing amplitudes and arm positions. Here is a comment from the researchers on what they found, it is pretty much what we have been writing about for several years based off of other research"

"The range of motion of the thorax with respect to the pelvis and of the pelvis with respect to the ground in the transversal plane were significantly associated with arm position and swing amplitude during gait. The hip external-internal rotation range of motion statistically varied only for non-dominant limb. Unlike hip joint reaction forces, predicted peak spinal loads at T12-L1 and L5-S1 showed significant differences at approximately the time of contralateral toe off and contralateral heel strike."

Thus, we find yet another study confirming what many will say is obvious, that being arm position and movements have notable effects on whole body kinetics and spinal loads. This study suggested that arm variations did not have an effect on spinal loads during walking. We find this curious; it is something we will be looking into, and pondering. We hope you do as well.

Effect of arm swinging on lumbar spine and hip joint forces. Lorenza Angelini et al. Journal of Biomechanics, Sept 2017
http://www.sciencedirect.com/science/article/pii/S0021929017304670

Cannabis users walk differently.

Screen Shot 2017-09-07 at 9.11.05 AM.png

We all have experienced or viewed the alcohol impaired gait at some point in our lives, the sloppy malcoordinated limb and torso movements. There are some classic observable characteristics there that many of us are familiar with.  But what about cannabis gait ?

"The research from the University of South Australia, published in the journal Drug and Alcohol Dependence, found those who smoke cannabis tend to move their shoulders less and elbows more as they walk. The pilot study also found marijuana users swing their knees more quickly during walking. The differences in gait were small and found in people who smoked a light or moderate amount of cannabis. Some changes were so small it was impossible for a specialist to detect."

However, the thing we found interesting was the papers final question, as to whether the subtle gait changes over a longer period of time would increase or become more apparent.

Not insinuating that Mystic Mac is a user, but he sure does help us hit our "reduced antiphasic gait" home with a glorious demo !

*We have seen this variation in arm swing gait many times before. We have discussed numerous times that when there is a reduction in the normal shoulder and pelvic "girdle" counter rotations, the normal antiphasic gait that presents us with the clearly obvious opposite arm-leg swings, we lose the ability to tap into these oscillations that afford us this free arm and leg swing.  So, when these girdle rotations are reduced, the limb movement has to come from further down into the limb, from elbow movement, a sort of casting the lower arm forward from biceps and triceps activity and from a kicking forward of the lower leg from quadriceps activity instead of hip flexion-extension activity.

We have mentioned this reduction in the normal antiphasic gait many times previously in our arm swing articles. Particularly, the reduction in the amplitude of the separation in the shoulder-pelvic girdle oscillations in those with spine pain. The more the spine is "twisted and wrung out" by these opposite swings, the more spinal motor unit compression, which can increase spine pain. Just search our blog for "arm swing" (30+ articles on the topic there). Thus the question remains , why does cannabis cause this same reduction?

Gait affects everything, and everything seems to affect our gait.

http://www.9news.com.au/national/2017/09/01/15/25/marijuana-users-walk-differently-australian-study-claims

Arm swing asymmetry: It can be a huge window of education into your client.

Arm swing asymmetry: It can be a huge window of education into your client, if you can get past the dumb stuff we’ve all done (and believed) for decades.
I have beaten you down with arm swing principles over the past few years, sorry about that, but, the beating will continue because it is important to know what arm swing tells you, and what it does not tell you (hint hint for all those improperly coaching arm swing changes). We did an entire tele seminar on the Stage 1 principles of of arm swing (#218) on www.onlinece.com and www.chirocredit.com if you wish to take that archived lecture. Heck $19, how can you lose (see photo).  Arm swing is intimately dependent upon scapular stability, thoracic mobility, breathing, cervical spine function, pelvis stability and clearly ipsilateral and contralateral leg swing not to forget to mention spinal stability. The first signs of spine pain or instability and the counter rotation of the shoulder and pelvic girdles become more phasic, instead of their normal anti phasic nature (moving in opposite directions). This phasic nature reduces spinal shear loads.

Neurologic diseases in their early, middle and late phases can give us a clearer window into how the nervous system is tied together.
Arm swing asymmetry during gait may be a sensitive sign for early Parkinson’s disease.

Here is what this Plate et al study found :
-Arm swing amplitude as well as arm swing asymmetry varied considerably in the healthy subjects.
-Elderly subjects swung their arms more than younger participants. -Only the more demanding mental load caused a significant asymmetry
-In the patient group, asymmetry was considerably higher and even more enhanced by mental loads.
-Evaluation of arm swing asymmetry may be used as part of a test battery for early Parkinson’s disease.

Some facts you should consider:
Parkinson’s Disease will be well advanced before the first signs of motor compromise occurs. So early detection and suspicion should be acted upon early when possible. Reductions or changes in arm swing may be the first signs of neuralgic disease expression and progression. Dual tasking may bring out neurologic signs early, so talk to your clients or have them count backwards to distract the motor programs. Look for one sided arm swing impairment, and when present, be sure to examine all limbs, especially the lower limbs, for impaired function. After all, the arms are like balasts, they can help with postural stability simply by abducting or modifying their swing.  Arm swing changes can include:
- crossing over the body
- more forward sagittal swing and less posterior swing
- more posterior sagittal swing and less anterior swing
- shoulder abduction during swing (and with attributes of the prior two mentioned above)
- less swing with adduction stabilized with torso
- modified through accentuations or dampening of shoulder girdle rotation oscillations, thus less arm swing but more torso swing to protect the glenohumeral and other joints
- and others of course

Arm swing and arm swing symmetry matter. Don’t be a dunce and just train it out or tell your client to do things to change it before you identify the “why” behind it. If it were that simple Ivo and I would have long grown tails and begun eating more bananas. Or maybe we would have already moved to the islands by now. That was random wasn’t it. That’s what Jimmy Buffett said.

“Now he lives in the islands, fishes the pilin’s
And drinks his green label each day
He’s writing his memoirs and losing his hearing
But he don’t care what most people say.
Through eighty-six years of perpetual motion
If he likes you he’ll smile then he’ll say
Jimmy, some of it’s magic, some of it’s tragic
But I had a good life all the way.
And he went to Paris looking for answers
To questions that bother him so.”  -Jimmy Buffett

Hope this helps, now back to that rum.
-Shawn Allen

Gait Posture. 2015 Jan;41(1):13-8. doi: 10.1016/j.gaitpost.2014.07.011. Epub 2014 Aug 8.
Normative data for arm swing asymmetry: how (a)symmetrical are we?  Plate A1, Sedunko D2, Pelykh O3, Schlick C4, Ilmberger JR5, Bötzel K6.
http://www.ncbi.nlm.nih.gov/pubmed/25442669

Kinetic chain transfer.

Anyone would be silly to disagree with this.
We go into some deeper reasoning back in this older blog post (https://tmblr.co/ZrRYjxTJ6zw9) looking at arm swing and leg swing and pairing of pelvis and shoulder posturing and how clean pelvis function parlays into upper body function in softball pitching.

“Proper utilization of the kinetic chain allows for efficient kinetic energy transfer from the proximal segments to the distal segments. Dysfunction at a proximal segment may lead to altered energy transfer and dysfunction at more distal segments,”

Lower body conditioning may cut upper body injury risk in softball. -Hank Black

http://lermagazine.com/special-section/pediatric-clinical-news/lower-body-conditioning-may-cut-upper-body-injury-risk-in-softball

Dr. Allen’s Quiz question of the week. See if you can get this one.Reference point is the Girl in the middle, big sister. Choose all that apply. Note: there is something deeper than the obvious going on here, it doesn’t make sense. Can you see it ? …

Dr. Allen’s Quiz question of the week. See if you can get this one.

Reference point is the Girl in the middle, big sister. Choose all that apply. Note: there is something deeper than the obvious going on here, it doesn’t make sense. Can you see it ? 

a. she (big sister) is out of phase with her little sister 

b. she is in phase with her little sister

c. she is out of phase with her little brother

d. she is in phase with her little brother

e.  A and C

f.  B and C

g. B and D

h. A and D

i. AC~DC rules

Yes, Answer  “i” is always right.

otherwise the answer is … . scroll down

.

.

.

.

.

.

.

.

F. she is in phase with her sister to her left and out of phase with her brother (at least if you are referencing her leg swing).  With her little sister, left feet are both forward in swing at the same time.

However, there is something deeper and requires some true critical thinking. IF you got the answer correct, congratulations. IF you did not, type in “in phase gait” or “arm swing” into the blog search engine and you will be able to read more about “in phase” and “out of phase” gaits.  

Now, look at the picture again. If she is “in phase” with her little sister to the left big sister should technically have her left arm in anterior/forward swing to meet little sister’s right arm swing. But, big sister’s left foot is forward, which technically means her left arm swing should be posterior to match her normal Anti-phasic gait.  But this does not pair with little sister. Can you see that this is a conflict in synchrony ? 

In phase and phasic are not the same thing, nor are out of phase and anti-phasic. Search our blog for these differences.  

Obviously you should glean by now that “In and out of phase” gait refers to the leg swing. Whereas, phasic and anti phasic gait refers to the synchrony of the upper and lower limbs in an individual.  The lower limb spinal cord motor neuron pools are more dominant than the upper arm pools (except in climbing, which is why I spent so much time last week talking about climbing and crawling here on the blog). Thus the lower legs often run the protocols and thus why arm swing changes should not be primarily or initially coached or amended in an athlete, they are very adaptive and accommodating.  The legs need to run the show, we need our arms free to be able to carry things while walking or running (water bottle, babies, spears, rifle, brief case etc) without disrupting the normal leg swing gait mechanics.  

Big sister is “out of phase” with her brother when it comes to the legs, but their arm swings are matching in phase so that there is no conflict. When people walk “out of phase” their arm swings will always match. Thus, it would seem that this is the more harmonious way to walk with a partner. 

So how are they all walking together ? Certainly not in harmony.

Obviously the little sister is not in sync with big sister. She is much shorter, and thus her step length is going to be different and that is the likely answer. She will have to pick up cadence to keep up and that will mean much of the time she will not synchronize with her big sister. As I mentioned in a prior post on these topics, often the larger or more dominant person’s arm swing will dictate the arm swing pattern of the other partner, and this will in turn, dictate how the lower limbs synchronize to the dominant partner. It would make sense that perfect harmony would bring about “out of phase” leg swing, but it does not always occur. Why? There are many reasons I discussed here today, things like differing arm and leg lengths and step lengths come to mind.

* There is one more option, none of them are in anti-phasic gait. Maybe they all have back pain :) Back pain patients tend to shift towards phasic gait to reduce spinal torsion and shear. If they all are anti-phasic then arm and leg swing matter very little in terms of full limb swing propulsive gait. This is quite possible as well, perhaps this is just a still photo representing a very slow strolling gait and thus little need for anti phasic gaits from all 3 of them. 

Neat points if you are a true gait nerd. Did you catch it ? A picture is worth a thousand words.

Hope this little quiz helped you to put some pieces together.

One more thing, here is a clinical pearl. By walking hand in hand with someone, you can help a person learn arm swing and leg swing and how to create a clean cadence, the normal anti-phasic gait, and learn how to dual task as well as add audible, visual and tactile queues to one’s gait. It is a great tool for helping neurologic gait pathologies, post stroke gait training and helping someone who has joint replacements or back pain regain normal anti-phasic gait traits where gait has become phasic and apropulsive. 

Dr. Shawn Allen

Falling hard; Using supination to stop the drop.

“One thing, affects all things. One change necessitates global change. The more you know, the more you will see (and understand).  The more you know, see and understand, the more responsible you will and should feel to get it right and the more global your approach should become. If your head does not spin at times with all the issues that need to be juggled, you are likely not seeing all the issues you should be seeing.” -Dr. Allen (from an upcoming CME course)

This is a case that has been looked at before but today with new video. This is a client with a known anatomic short leg on the right (sock-less foot) from a diseased right hip joint.  

In this video, it is clear to see the subconscious brain attempting to lengthen the right leg by right foot strike laterally (in supination) in an attempt to keep the arch and talus as high as possible.  Supination should raise the arch and thus the resting height of the talus, which will functionally lengthen the leg.  This is great for the early stance phase of gait and help to normalize pelvis symmetry, however, it will certainly result in (as seen in this video) a sudden late stance phase pronation event as they move over to the medial foot for toe off. Pronation will occur abruptly and excessively, which can have its own set of biomechanical compensations all the way up the chain, from metatarsal stress responses and plantar fasciitis to hip rotational pathologies.  It will also result in a sudden plummet downwards back into the anatomic short leg as the functional lengthening strategy is aborted out of necessity to move forward.  

This is a case where use of a full length sole lift is imperative at all times. The closer you get to normalizing the functional length, the less you need to worry about controlling pronation with a controlling orthotic (controlling rate and extent of arch drop in many cases). Do not use a heel lift only in these cases, you can see this client is already rushing quickly into forefoot loading from the issues at hand, the last thing you should be doing is plantarflexing the foot-ankle and helping them get to the forefoot even faster !  This will cause toe hammering and gripping and set the client up for further risk to fat pat displacement, abnormal metatarsal loading, challenges to the lumbricals as well as imbalances in the harmony of the long and short flexors and extensors (ie. hammer toes). 

How much do you lift ?  Be patient, go little by little. Give time for adaptation. Gauge the amount on improved function, not trying to match the right and the left precisely, after all the two hips are not the same to begin with. So go with cleaner function over choosing matching equal leg lengths.  Give time for compensatory adaptation, it is going to take time.  

Finally, do not forget that these types of clients will always need therapy and retraining of normal ankle rocker and hip extension mechanics as well as lumbopelvic stability (because they will be most likely be dumping into anterior pelvic tilt and knee flexion during the sudden forefoot loading in the late midstance phase of gait). So ramp up those lower abdominals (especially on the right) !  

Oh, and do not forget that left arm swing will be all distorted since it pairs with this right limp challenge. Leave those therapeutic issues to the end, they will not change until they see more equal functional leg lengths. This is why we say never (ok, almost never) retrain arm swing until you know you have two closely symmetrical lower limbs. Otherwise you will be teaching them to compensate on an already faulty motor compensation. Remember, to get proper anti-phasic gait, or better put, to slow the tendency towards spinal protective phasic gait, you need the pelvic and shoulder “girdles” to cooperate. When you get it right, opposite arm and leg will swing together in same pendulum direction, and this will be matched and set up by an antiphasic gait.

One last thing, rushing to the right forefoot will force an early departure off that right limb during gait, which will have to be caught by the left quad to dampen the premature load on the left. They will also likely have a left frontal plane pelvis drift which will also have to be addressed at some point or concurrently. This could set up a cross over gait in some folks, so watch for that as well.

“One thing, affects all things. One change necessitates global change. The more you know, the more you will see (and understand).  The more you know, see and understand, the more responsible you will and should feel to get it right and the more global your approach should become. If your head does not spin at times with all the issues that need to be juggled, you are likely not seeing all the issues you should be seeing.” -Dr. Allen (from an upcoming CME course)

Shawn Allen, one of the gait guys.

Unique adaptations to arm swing challenges: the one armed runner.  Welcome to Luke Ericson, an amazing athlete and man.

Written By Dr. Shawn Allen

Human gait is cyclical. For the most part, when one limb is engaged on the ground (stance phase), the other is in swing phase. Before I continue, you should recall that there is a brief double limb support phase in walking gait, that which is absent in running gait. Also, I wish to remind you of our time hammered principle that when the foot is on the ground the glutes are heavily in charge, and when the foot is in the air, the abdominals are heavily in charge.  

For one to move cleanly and efficiently one would assume that the best way to do that would be to ensure that the lower 2 limbs are capable of doing the exact same things, with the same timing, same skill, same endurance and same strength. This goes for the upper 2 limbs as well, and then of course the synchronizing of the 4 in a cohesive effort. For this clean seamless motor function to occur, one must assume that there would be no injuries that had left a remnant mark on one limb thus encouraging a necessary compensation pattern in that limb (and one that would then have to be negotiated with the opposite limb as well as the contralateral upper or lower limb).  

Removing a considerable mass of tissue anywhere in the body is going to change the symmetry of the body and require compensations. One can clearly see the effects of this on this athletes body in the video above. He even eludes to the fact that he has a scoliosis, no surprise there.  There is such an unequal mass distribution that there is little way the spine had any chance to remain straight.  Not only is this going to change symmetry from a static postural perspective (bulk, weight, fascial plane changes, strength etc) but it will change dynamic postural control, mobility and stability as well as dynamic spinal kinematics.  I have talked about this previously in a blog piece I wrote on post-mastectomy clients display changes in spatiotemporal gait parameter such as step length and gait velocity.

-mastectomy post: http://tmblr.co/ZrRYjx1XB8RhO

If you have been with The Gait Guys for more than a year you will know that impairing an arm swing will show altered biomechanics in the opposite lower limb (and furthermore, if you alter one lower limb, you begin a process of altering the biomechanical function and rhythmicity of the opposite leg as well.) You can search the blog for “arm swing part 1 and part 2″ for those dialogues.

Arm swing impairment is a real issue and it is one that is typically far overlooked and misrepresented. The intrinsic effects of altering the body through subtraction of tissue are not all that dissimilar to extrinsic changes into the system from things like  walking with a handbag/briefcase, walking with a shoulder bag, walking and running with an ipod or water bottle in one hand. And do not forget other intrinsic problems that affect spinal symmetry, for example consider the changes on the system from scoliosis as in this case.  It can cycle back on its own feedback loop into the system, either consciously or unconsciously altering arm swing and thus global body kinematics.  

There is a reason that in my practice I often assess and treat contralateral upper and lower limbs as well as to address remnants from old injuries whether they are symptomatic or not. It all comes together for the organism as a concerted effort in optimal locomotion.

Here on TGG, and in dialogues with Ivo on our podcast, I have long talked about phasic and anti-phasic motions of the arms and shoulder-pelvic blocks during gait and locomotion/sport activity.  I have written several times about the effects of spine pain and how spine pain clients reduce the anti-phasic rotational (axial) nature of the shoulder girdle and pelvic girdle. In the video above, you can see anything but anti-phasic gait, to be clear, this is a classic representation of a phasic gait. The shoulder block and the pelvic block show little if any counter rotation, they are linked together which is not normal gait. Furthermore, if you look carefully, the timing of the right arm swing is variable and cyclically changing in its timing with the left leg. Look carefully, you will see the cyclical success and failure at the beginning of the video.  This is pathologic gait, he must be constantly fighting frontal plane sway because there is no axial anti-phasic motion. He is also constantly fighting the unidirectional rotation that the absence of an entire limb and limb girdle is presenting, you can see him struggle with this if you have looked at enough gait samplings. There is essentially frozen torso movements.  Want to see more of our work on arm swing ? search the gait guys blog.

There is so much more here to discuss, so I will likely return to this video another time to delve into those other things on my mind. Luke is an amazing athlete, he gets much respect from me.

I hope this dialogue helps you to get a deeper grip on gait and gait problems. I have written many articles on the topics of arm swing, phasic and anti-phasic gait, central pattern generators. The are all archived here on the blog. I try to write a new original thought-process article each week for the blog amongst the other “aggregator” type stuff we share from other folks social media. My weekly article serves to go deeper into things, sometimes they are well referenced and in this case, I am basing today’s discussion on the referenced work in the other pieces I have written on arm swing, phasic and anti-phasic gait, central pattern generators etc. So please do your readings there before we begin debate or dialogue, which i always welcome !

Dr. Shawn Allen

Podcast 82: Phasic vs Antiphasic Gait, Cross Over Gait & more.

Show sponsors:

www.newbalancechicago.com

www.lemsshoes.com

A. Link to our server: 

http://traffic.libsyn.com/thegaitguys/pod_82final.mp3

Direct Download: 

http://thegaitguys.libsyn.com/podcast-82-phasic-vs-antiphasic-gait-cross-over-gait-more

B. iTunes link:

https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138

C. Gait Guys online /download store (National Shoe Fit Certification and more !) :

http://store.payloadz.com/results/results.aspx?m=80204

D. other web based Gait Guys lectures:

www.onlinece.com   type in Dr. Waerlop or Dr. Allen,  ”Biomechanics”

 

Show notes:

 
Blog posts we reviewed:
 

Muscle Activity Differences in Forefoot and Rearfoot Strikers
http://www.runresearchjunkie.com/muscle-activity-differences-in-forefoot-and-rearfoot-strikers/

www.runnersworld.com/injury-treatment/forward-lean-while-running-might-reduce-knee-pain?cid=social33696857

Weight-Bearing Ankle Dorsiflexion Range of Motion—Can Side-to-Side Symmetry Be Assumed?
http://www.natajournals.com/doi/abs/10.4085/1062-6050-49.3.40

extras for this piece:

and you can use this to substantiate it: http://www.ncbi.nlm.nih.gov/pubmed/23997389

Effect of step width manipulation on tibial stress during running. J Biomech. 2014 Aug 22;47(11):2738-44. doi: 10.1016/j.jbiomech.2014.04.047. Epub 2014 May 21.

This Client went Phasic in their Gait. Do you know what that means ? We do, and so does McGill, Liebenson, Cook and many others.

Long ago on this blog we showed and discussed a video (link) that discussed Stu McGill's research of the human movements of Georges St-Pierre and David Loiseau. The basic tenets of that video were that the hips and shoulders are used for power production and that the spine-core are used for creating stiffness and stability for the ultimate power transmission through the limb.  He made it clear that if power is generated from the spine, it will suffer. 

Here on TGG we have long talked about phasic and antiphasic motions of the arms and shoulder-pelvic blocks during gait and locomotion/sport activity.  Many of our 1000+ blog writings and 80 podcasts have talked about spine pain and how spine pain clients reduce the antiphasic rotational (axial) nature of the shoulder girdle and pelvic girdle. In the video above, we see anything but antiphasic gait, to be clear, this is a classic representation of a phasic gait. This is pathologic gait, the frontal plane sway is exaggerated and necessary because there is no axial antiphasic motion.  There is essentially frozen arm and torso movements. This client has a long standing history of severe spine trauma and pain, their central pattern generators (CPG) had to make this motor pattern choice in an attempt to avoid pain and negotiate force streams across trauma zones. If you are curious and wish to go deeper down this rabbit hole, read the 30+ articles we have produced more specifically on arm swing and locomotor phasics, just click here.

In these types of cases, the client subconsciously makes the subcortial pattern choice (overrides the normal CPG) to rotate them as a solid unit to reduce spine rotation, axial loading and compression.  We could say that quite often spine pain disables the normal arm-leg pendulums via altering the shoulder-torso and hip-pelvis phasics and the CPG that dictates them. Normally, the spine and core must present sufficient amounts of recruited stiffness, yet mobility where necessary, to enable the locomotive power and velocity generated by movements of the shoulders and hips. These are the two main portals of limb movement off of the spine/core.  These principles holds true in gait and sport. For and interesting example, in human gait the psoas is not entirely a hip flexor initiator when it comes to leg swing, it is a huge hip flexion perpetuator. The initial hip flexion in human gait comes from derotating the obliqued pelvis, via abdominal contraction, on a stiff and stable spine.  Once the pelvis rotation is initiated, the femur can further pendulum forward (via contraction of the psoas and other muscles) on the forward accelerated pelvis in the hip joint proper creating an energy efficient movement (the towel flick/whip effect). This premise holds true in gait, running, kicking etc.  This is a solid principle of effective and efficient human locomotion. This principle also holds true for a punch or throwing an object, the stable torso/spine provides a stable anchor upon which to accelerate the arm in order to create a high velocity limb movement with power.  But here is where we get annoyed much of the time.  (Soap box Tangent coming up) How often do you read articles about tight ITBand, tight psoas, tight piriformis and the like ?  As a “diagnosis” these are weak and they are the “go to diagnosis or cause” of the unseasoned clinician, trainer, coach, therapist. If we all are to be really good at our job, we must go beyond what we see in someone’s gait (since it is the compensation) and go beyond the CNS neuroprotective strategy of tightness/shortness when there is weakness or motor pattern failure.  This does not mean that you cannot, or should not, incorporate restoration methods and principles to restore length-tension relationships in your client, it means you have to resolve ALL of the problems, including the aberrant CPG they have set up as a protective default to avoid injury or further injury. 

In the case above, returning the discussion to arm and leg swing, one must understand clearly that faulty arm swing patterns and lack of antiphasic torso and pelvis oscillation is a product of surgery,  trauma and more so, pain. The client is avoiding the antiphasic presentation (hence, he is phasic) for a reason and coaching more arm swing would be just about the dumbest intervention, so don’t be “that guy”. We know this is an altered motor pattern choice, not a new fixed set point. We know this because on clinical examination the range is available, we know because we examined for it, it is just not being used.  In an example of this same principle, in this case talking hip ranges of motion, McGill discusses the same in his paper*:

“Despite the large increases in passive hip ROM, there was no evidence of increased hip ROM used during functional movement testing. Similarly, the only significant change in lumbar motion was a reduction in lumbar rotation during the active hip extension maneuver (p < 0.05). These results indicate that changes in passive ROM or core endurance do not automatically transfer to changes in functional movement patterns. This implies that training and rehabilitation programs may benefit from an additional focus on grooving new motor patterns if newfound movement range is to be used.”

Think about that next time you stretch, or are stretched by someone. As we have said before, just because you increase someone’s range of motion, does not mean they will be able to incorporate that range of motion into a movement pattern, or compensation pattern for that matter. It is only ¼ of the equation: Range of Motion,  Skill (or proprioception),  Endurance (or the proportion of slow twitch muscle) and Strength (the proportion of fast twitch muscle). There is our S.E.S. mnemonic again.

In this video case, lack of NORMAL antiphasic spinal motion (torso and pelvis moving opposite one another) is noted. Without the obliqued pelvis the swing and stance phases will be impaired. The psoas may have to become more of a hip flexor initiator, AS WELL AS the perpetuator of limb swing, because there is no pelvic obliquity from the antiphasic principles to drive it from. And so, when you see this fella in your office with bilateral tight psoas/hip flexor complex and tight quadriceps mechanisms with resultant impaired glutes and hip extension, please do not begin lengthening them as your point of initiation.  They are that way because he has gone phasic in his gait.  Change the motor patterns that drive this as best as possible, restore any weaknesses that are contributory to, or initiate, these motor patterns and then, if needed, encourage some progressive new length-tension in these muscle groups as improved motor patterning evolve to allow for it.  You are likely going to have to go back and reteach and restore primitive and postural sensory motor windows in these cases, so be patient, be kind, be wise. Oh, and do not forget that with impaired hip function, there will most likely be impaired ankle rocker,  you are going to need a wide angled lens to see, capture and remedy this lads problems.

On another note, can you imagine what this client’s video gait analysis would show and interpret ? Let alone the diagnostics and recommendations that could come from it?  What about the appearance of their foot pressures across a dynamic foot pressure plate (or God forbid a static one !), surely what is seen at the foot is this client’s problem (not !) And forgive those poor fools who recommend a shoe for this client based off of just those mediums alone.  Without a complete hands-on clinical examination to correlate gait cycle observances, any recommendations for this case will be traumatic on many levels. 

Today’s bottom line……. read, learn, think, stay hungry, be wise.

Shawn and Ivo, The Gait Guys

* Improvements in hip flexibility do not transfer to mobility in functional movement patterns.  Moreside, Janice: McGill, Stuart

link: http://journals.lww.com/nsca-jscr/Fulltext/2013/10000/Improvements_in_Hip_Flexibility_Do_Not_Transfer_to.1.aspx