Podcast 159: Accelerating body mass, foot intrinsic thickness, ADHD gait and more !

Patreon and Masterclass:  https://www.patreon.com/thegaitguys

join us at the 40$ level,

VIMEO on demand (pssst, the 40$ patreon level is a better deal  !)

https://vimeo.com/ondemand/thegaitmasterclass

*The Masterclass in Gait, with the Gait Guys join us monthly at: https://www.patreon.com/thegaitguys for the monthly Masterclass installment hour. Formal presentations, slides, videos, demos, deep dives on topics you will not hear anywhere but here ! We hit gait, biomechanics, neurology and orthopedics of all of the gait topics we present. This is not for the weak and timid, this is the deep dive you have been waiting for. Join us while we turn our normal 50 minute presentations into 3.5 hours on a regular basis !

The 40$ Patreon level will give you the best deal on the Masterclass and also get you the $20, $10, and 5$ Patreon level content. What a deal ! It will not be here forever so lock in now ! Note, the 40$ Patreon level gets you more Masterclass content than the $40 VIMEO purchases.
Links to find the podcast:
Look for us on Apple Podcasts, Google Play, Podbean, PlayerFM, RADIO and more.
Just Google "the gait guys podcast".
_______________________________________________________________________________
Our Websites:
www.thegaitguys.com
Find Exclusive content at: https://www.patreon.com/thegaitguys
doctorallen.co
summitchiroandrehab.com
shawnallen.net

Our website is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).

Our podcast is on iTunes and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.

Where to find us, the podcast Links:
Apple podcasts:
https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138?mt=2
Google Play:
https://play.google.com/music/m/Icdfyphojzy3drj2tsxaxuadiue?t=The_Gait_Guys_Podcast

Links to today's show:

http://traffic.libsyn.com/thegaitguys/pod_159_april_5_-_42620.mp3

http://thegaitguys.libsyn.com/accelerating-body-mass-foot-intrinsic-thickness-adhd-gait-and-more

http://directory.libsyn.com/episode/index/id/14155346

Show notes:

Gait Posture. 2020 Feb 20;78:54-59. doi: 10.1016/j.gaitpost.2020.02.014. [Epub ahead of print]

Muscle capacity to accelerate the body during gait varies with foot position in cerebral palsy.
Hegarty AK1, Kurz MJ2, Stuberg W2, Silverman AK3.

J Sport Rehabil. 2020 Mar 31:1-9. doi: 10.1123/jsr.2019-0211. [Epub ahead of print]
Effects of a 4-Week Short-Foot Exercise Program on Gait Characteristics in Patients With Stage II Posterior Tibial Tendon Dysfunction.
Kim J, Lee SC, Chun Y, Jun HP, Seegmiller JG, Kim KM, Lee SY.

Hum Mov Sci. 2020 Apr;70:102584. doi: 10.1016/j.humov.2020.102584. Epub 2020 Feb 8.
Gait control in children with attention-deficit/hyperactivity disorder.
Simmons RW1, Taggart TC2, Thomas JD3, Mattson SN3, Riley EP3.

Gait Posture. 2020 Mar 17;78:30-34. doi: 10.1016/j.gaitpost.2020.03.009. [Epub ahead of print]
Navicular drop is negatively associated with flexor hallucis brevis thickness in community-dwelling older adults.
Fukumoto Y1, Asai T2, Ichikawa M3, Kusumi H3, Kubo H4, Oka T5, Kasuya A6.

Front Pediatr. 2020 Feb 28;8:75. doi: 10.3389/fped.2020.00075. eCollection 2020.
Effects of Selective Dorsal Rhizotomy on Ankle Joint Function in Patients With Cerebral Palsy.
Ates F1, Brandenburg JE2,3,4, Kaufman KR1.

Gait Posture. 2020 Mar 4;78:26-29. doi: 10.1016/j.gaitpost.2020.03.003. [Epub ahead of print]
Higher visual reliance during single-leg balance bilaterally occurring following acute lateral ankle sprain: A potential central mechanism of bilateral sensorimotor deficits.
Kim KM1.

Arm swing and instability. To train or not to train... Should we do it?

We have long talked about arm swing and whether to change it, encourage it or just observe it. It appears to be an indicator of potential instability as well as a portent for more dire neurological problems (Alzheimers, Parkinson's)

This study looks at altered arm swing in kids with CP; how it is an indicator that there is a problem and how it can profoundly effect their gait and stability. Cerebral palsy may be an extreme case, but how does it differ REALLY (other than severity) from someone who has a mild neurological impairment, such as movement patterning disorders, that we see each and every day in our friends, family, clients and patients? Try and think out of the box and investigate the implications.

"Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in children with cerebral palsy. The current results thereby partly support the suggestion that facilitating arm swing in specific situations possibly enhances safety and reduces the risk of falling in children with cerebral palsy."

Front Hum Neurosci. 2016 Jul 15;10:354. doi: 10.3389/fnhum.2016.00354. eCollection 2016.
Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy.
Delabastita T, Desloovere K, Meyns P.

link to FREE FULL TEXT: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945643/

Toe Walking in Children. Do you know what you are dealing with ? Part 2
So you have now ruled out possible Autism-spectrum, possible CMT (Charcot-Marie Tooth Disease), CP (Cerebral Palsy), MD (Muscular Dystrophy) in your young toe walking individual…

Toe Walking in Children. Do you know what you are dealing with ? Part 2

So you have now ruled out possible Autism-spectrum, possible CMT (Charcot-Marie Tooth Disease), CP (Cerebral Palsy), MD (Muscular Dystrophy) in your young toe walking individual.  Now you have been left with the aftermath foggy diagnosis of “Idiopathy Toe Walking”, that doesn’t leave you as a parent or clinician with much to work with or likely to be confident about. Let us try to help make things clearer and give you some other cognitive options to entertain. New research in recent years has brought new light onto the issue and we wanted to use today’s blog post as a platform to share it with you. 

In a previous week’s “Part 1” blog post & video (link) you can see in the gait on the video that nothing appears to be terribly abnormal in the foot structure (from what we can tell), the client is merely remaining in the plantarflexed posture and forefoot weight bearing.  This is highly ineffective gait and can be very fatiguing let alone to mention the sustained loading into the posterior compartment and plantarflexor mechanism (gastrosoleus-achilles) not to mention the sustained forefoot loading response on the foot bones and joints. Remember, the tibialis posterior and long toe flexors are close neighbors with capabilities of plantarflexion moments, so there are possible clinical manifestations there as well not to mention the obvious (especially to long-time Gait Guys readers) deficits that will be found in functional ankle dorsiflexion, ankle rocker and S.E.S. (skill, endurance, strength) of the anterior compartment mechanism (tibialis anterior, long toe extensors, peroneus tertius).  Even if this client were to go into normal heel strike and stance phases right now, they would have lots of work to do to restore the anterior-posterior compartment balance, the 3 foot rockers (heel, ankle and forefoot) abd posterior compartment length to avoid functional pathology not to mention the timely coordination of all these events. 

Idiopathic toe walking is suggested to be as prevalent as 12%. Toe walking is categorized when there is an absence, or at least a limitation, of heel strike during initial walking gait contact phase. We are not referring to, at all, forefoot running principles. Neuromotor maturation comes about via the suppression of the primitive reflexes/windows and appearance of the postural reflexes and responses. Delays or subtractions of these windows/reflexes may cause challenges in the normal development and maturation of the central and/or peripheral nervous systems.  With toe walking, the clinical window most studies suggest is to begin investigation after 3 years of age when the primitive motor patterns should have solidified and the gait and postural patterns have begun to layer on top of those primitive reflexes.  Remember though, the primitive patterns are not sequentially fixed, meaning that infants move in and out of these reflexes until they become skilled and permanent.  It is not until they are fixed that the postural patterns, which are volitional, can be gradually built. This should bring some deeper thoughts to your mind right now.  Is toe walking behavior a missed primitive window or a non-volitional postural window? These kids are not doing this by choice, anyone who has worked with these types of cases knows this very well, and we have seen our share. 

In the literature and clinics a plethora of things have been tried and discussed (ie. serial casting, botulinum toxin, surgical tendon lengthening, gait retraining, orthoses/orthotics, night splints, day splints and the like). Keep in mind that only one of the above is addressing a functional change via cognitive and higher brain center demand, “gait retraining”. The others are passive forced attempts.  But is gait training enough ? And how far back into primitive and postural gait pattern training do you have to go? Gait training certainly does something as eluded to by two research papers we posted on our Facebook page in previous weeks. See those references below.

“For both feet, contact time of the heel was increased after the training period, whereas contact time of the forefeet decrease. Also positive changes in the active range of joint motion of the ankle (dorsal extension) were observed in both feet. These positive effects were visible also in the follow–up assessment.” -Pelykh study

Daily intensive gait training may influence the elastic properties of ankle joint muscles and facilitate toe lift and heel strike in children with CP. Intensive gait training may be beneficial in preventing contractures and maintain gait ability in children with CP.” - Willerslev-Olsen study

So what else could be going on here ? Is this neurodevelopmental ? Yes, for sure.  But where did things go awry ?  And how do we fix it ? Remember, the development of primitive and postural reflexes is supposed to occur proximal to distal (ie. from core to hand/foot).

In a recent study in the Journal of Child Neurology,  

“for the first time, motor and sensory challenges presenting in healthy children with an idopathic toe walking gait have been identified.These challenges imply an immaturity or mild impairment at the cerebellum or motor cortex level.”

As the article suggested, the research did not render direct cause(s) for the gait pattern, rather some very viable theories on the topic. They found that only the areas of balance, upper body coordination and bilateral coordination were areas found to be problematic in the toe walkers. These 3 components require the integration of the tactile, vestibular and proprioceptive systems as a team. Diving deeper into how these 3 outputs are linked, there is a required “mix of occulomotor control and cues together with subtle and gross postural adjustments” (3). As Williams et al (3) suggested, “they are skills requiring the coordination of movements in which each side of the body moves simultaneously or in sequence”.  Kind of sounds like some topics on Arm Swing/Leg swing and also on the topic of phasic/antiphasic gait we have discussed over and over again here on TGG and in recent podcasts (82) doesn’t it ?  It was proposed that perhaps idiopathic toe walkers negotiate their sensory challenges by unconsciously engaging toe walking behavior to change or challenge these inputs.  Here were some of the proposed thoughts from the Williams study.

“The tactile receptors of the skin may be stimulated through pressure at the ball of the foot or lessened by a reduction of surface contact by raising the heel off the ground. Proprioceptive input may be changed at the knee, ankle and even toe joints by unconsciously repositioning of the foot posture.  The vestibular input may be increased by the vertical stimulation of the bouncy type gait that results from toe walking.”(3) Williams

It seems clear from the Williams study that these children demonstrate a number of sensory needs that motivate toe walking to alter (increase or decrease) or improve sensory input.  The study also suggests that the toe walking gait is an attempt to modify input on postural stimuli during gait to serve diminished postural and position awareness.

The findings of this study are important.  Our most recent blog posts and podcasts (Nov 2014) have discussed some of the components to build, control and coordinate gait on a higher neurologic level. The Williams article seems to support these discussions, that some pathologic gaits are initiated on a neurologic level as opposed to biomechanical at the foot and ankle level.  This sounds like the work offered by “the functional neurologist”, graduates of the Carrick Institute for Graduate Studies ! (carrickinstitute.com)

Have a great day gait brethren !

Shawn and Ivo, The Gait Guys

References:

1. Eur J Phys Rehabil Med. 2014 Oct 9. [Epub ahead of print]

Treatment outcome of visual feedback training in an adult patient with habitual toe walking.

NeuroRehabilitation. 2014 Oct 15. [Epub ahead of print]

2. Gait training reduces ankle joint stiffness and facilitates heel strike in children with Cerebral Palsy.

3. Is idiopathic toe walking really idiopathic ? The motor skills and sensory processing abilities associated with idiopathic toe walking gait.  J Child Neurol 2014, 29:71 Williams, C. , Curtin, Wakefield and Nielsen