Right arch pain, can you see a possible reason in this video?

Do you see a possible reason for right foot pain? There is something not kosher to be seen. It doesnt mean it is valid, or the cause, or that it is primary or secondary, but it should be something that cues up a clinical exam focus to rule in/rule out.
Answer below (don;'t read further, test yourself)
.
.
.
.
.
.
.
.
.
.
.
the right hallux does not fully extend. And we know that hallux dorisflexion at the 1st MTP joint engages the windlass, and helps to plantarflex the 1st MET and raise the arch and prepare the foot for loading and for forefoot transition. If the hallux doesn't extend sufficiently (like in a hallux rigidus, painful turf toe etc) then we can have some loading issues. Just something to think about. In this case, it was the cause and answer. But might not always be such.

When your calf is weak, things can dorsiflex too much sometimes.

When your calf is weak, things can dorsiflex too much sometimes. Maybe this is why you have Achilles tendinopathy. Maybe.

When we run, we either heel strike, midfoot strike, or forefoot strike. The literature is pretty clear on this now, that any one of them is not better than the other and there are many variables that need to be taken into consideration (even though many folks, who stopped reading the studies long after the barefoot craze began, will proclaim at the grave of their mother that rearfoot strike and anything but zero drop shoes are the root of all evil).

However, if you are a forefoot striker, the calf complex must be durable, strong and have enough endurance that when the foot strike occurs, that over time the complex does not allow the heel drop to become excessive or uncontrolled to the point that the achilles tendon proper exceeds its capacity to tolerate the drop, the stretch load capacity. It is more complex than this, because when the heel drops too much, too far, too fast and the arch is not durable enough, the metatarsals may dorsiflex too much and compromise the arch and stiffness of the midfoot, this can also have its complications. A weak calf can impact the rest of the foot. Remember, when the forefoot is engaged on the ground, and the heel drops in an uncontrolled fashion, we are increasing ankle dorsiflexion too, and this may not be welcomed during a stance phase of running where we are hoping for sufficient foot stiffness to load across it and propulse off of it.

This study showed that "analysis revealed that male recruits with lower plantar flexor strength and increased dorsiflexion excursion were at a greater risk of Achilles tendon overuse injury".

Intrinsic risk factors for the development of achilles tendon overuse injury: a prospective study.

Mahieu NN, et al. Am J Sports Med. 2006.

Pigeon holed into a particular running form. Some thoughts.

We should not pigeon hole everyone into one of the major (often discussed) "running forms". Every person's running form has some unique parameters that work for them (and perhaps some components that do not work for them and lead to injury), and asking their body to do something else that you "deem" better for them because it looks right/better can at times lead to new issues or complications in resolving their complaints. Work with their system, their anatomy. Help them correct mechanical flaws related to their problems/complaints/injuries. Do not try to get everyone into one of the classically pristine and magazine cover running forms. As Allan on our FB page said, "gait correction requires work". And may we say this . . . . that prescribing corrective exercises does not mean they will spill over into their gait with positive changes. There must be teachable time that is hands on to help them blend over the corrective work into new gait patterns. This is a skill that takes a long time to learn and figure out, and each client is different and each client requires different cues and different exercises to tap into the desirable cues for them. This is why internet/youtube corrective exercise prescribed homework (ie. do this exercise to correct your iliotibial band syndrome) often does not work and sometimes creates new problems down the road. Why? . . . because there are holes missing when there is not a hands on exam to ensure the corrective work is the right work, and, just as importantly, it takes time and skill to show, demo, and translate how and why the homework will take over into a new gait pattern. Translation, corrective exercises do not guarantee a new gait pattern or new running form. There are so many bad examples we could use, "just going to the mechanic does not guarantee they will fix your car", "changing your tires does not necessarily make you a safer driver", "watching some youtube videos on learning to drive does not mean you actually know how to sit in a car and drive".

Adaptations and compensations.

Screen Shot 2018-10-25 at 10.54.01 AM.png

. . . the entire system has to adapt to that deficiency. That means compensation. Now, does adding strength to that asymmetry (compensation) have a consequence. Most likely. Will it lead to injury? That is the question.

We are going to keep pounding sand on this one because we believe this is important.
All too often people are working out and strengthening their systems, and that is good. But, if they are strengthening a system that is asymmetric or strengthening a faulty pattern (clearly, as in too much arch collapse) they are likely overburdening the hierarchical system and a component of the chain of that system.
Now, many are going to argue, and we know who those folks are, they are going to argue that if the movement is not painful, if the posturing of the load is not painful, then it is not a problem. Sure, and that is easy to say, but there is no proof they are right either. And, we are not saying we are stonewalled right either, but we are trying to be logical with what we know and what some of the research says (yes, that fits our bias). But our eyes are open and we hear the arguments from the other side, but those arguments come from a crystal ball in our opinion. Truthfully, no one has that crystal ball and can see into the future to see if one side of this argument has any more "legs" to it.
However, we know that . . .

"Human movement is initiated, controlled and executed in a hierarchical system including the nervous system, muscle and tendon. If a component in the loop loses its integrity, the entire system has to adapt to that deficiency. Achilles tendon, when degenerated, exhibits lower stiffness. This local mechanical deficit may be compensated for by an alteration of motor commands from the CNS. These modulations in motor commands from the CNS may lead to altered activation of the agonist, synergist and antagonist muscles."- Chang and Kulig

So, when we see a pattern of loading that is aberrant, and especially when it is most likely playing into a client's painful presentation, it is an easier sell on the thought-arguments above. We know that the entire system has to adapt to deficiencies. It is how we are synergistically built. We have redundancies build into us that protect us. Compensation is part of the redundancy. So, does adding strength to that asymmetry (compensation) have a consequence? Most likely it does, in our opinion. Why allow an area to undergo more loading than we know it should, (ie. valgus knee loading) even if it is non-painful to a client ? Will it lead to eventual injury or pain? That is the question. But we have picked our side of the story, for now, until proven otherwise, and we work from that side of the line. For now.

"yet" is a powerful looming word.
When adding strength takes someones pain away, it doesn't mean you fixed them. It likely means you helped them adapt and protect and better negotiate the loads. However, it also does not mean that your instruction did not build a layer of initial protective strength that will not have a cost further down the road because it wasn't the right medicine for the problem.
When your cars alignment is off, and it is pulling the car to the right towards the ditch, pulling harder to the left on the steering wheel keeps the alignment aberrancy, and the ditch at bay. But nothing was fixed. You adapted and compensated. The problem is still sitting there. And you will get used to the adapted and compensated pattern of steering wheel pull in time. Until the next thing occurs. Maybe the tire will start to chirp in time, the treads silently wear unevenly, and maybe it will be your left shoulder that chirps at you, and not the car.

The squeaky wheel may get the grease, but the misaligned tire is ignored.

Shawn and Ivo, the gait guys

J Physiol. 2015 Aug 1; 593(Pt 15): 3373–3387.
Published online 2015 Jun 30. doi: 10.1113/JP270220
The neuromechanical adaptations to Achilles tendinosis
Yu-Jen Chang and Kornelia Kulig

#gait, #thegaitguys, #gaitcompensations, #gaitproblems, #compensations, #running, #walking, #genuvalgus, #pronation, #CNS, #synergist

The knee follows the arch/ankle.

*in the video, watch the left knee
Hopefully this video and post will make you think deeper about patellofemoral tracking, runners knee, meniscal issues and anterior knee pain syndromes as a whole.

This is subtle, but in this case, this is relevant to the LEFT knee complaints of this client.
When the foot complex is a little weak, the arch can collapse more than it should, rendering too much pronation, this means the talus will adduct, plantarflex and medially rotate more than it should. Since the tibia sits on top of this talus it must follow. This will allow more internal tibia spin (medial rotation) and this will drag the knee medially (it appears in the video to be a valgus load but it is more internal/medial rotation than valgus).
So, what the foot-ankle complex does, the knee follows. Conversely, when the knee moves medially or valgus because of a hip weakness (poor external rotation control) the foot will move medially.
So, are you going to "fix" this with an orthotic ? A stability shoe? Or are you going to actually help the client gain better control ?
You can see that our "raise the toes, to raise the arch" helps the client find the more appropriate arch posture with the help of more anterior compartment engagement and windlass effect at the 1st MPT-hallux joint. This is where our reteaching of the component parts via "motor chunking" via the Shuffle Walk (see our youtube channel) can help them control the rate and amount of arch "collapse" and thus control the rate of medial knee spin.
i say it on our podcast all the time, the knee is a simple sagittal hinge joint between 2 multiaxial joints. It is often a follower, not a leader.
Or you can bandaid this client with an expensive orthotic and never fix their problem. This keeps them coming back over and over for symptom management. It is a good business model (insert sarcasm), but helping this client learn and remedy their deficiency is a better one. Happy people talk to their friends, even strangers.

Shawn Allen, the other gait guy

#gait, #gaitproblems, #gaitanalysis, #ovepronation, #archcollapse, #valgusknee, #tibialspin, #internalhiprotation, #thegaitguys, #kneepain, #runnersknee, #patellapain, #anteriorkneepain

"You do not have a shoe problem, you have a "thing in the shoe problem", meaning, it is you."

We say this so often in our offices.
"You do not have a shoe problem, you have a "thing in the shoe problem", meaning, it is you."
Translation: compromised mechanics leading to tissue overloading.
But we all have to strongly consider that injury is a result of the loading you have not trained gradually into, failure to adapt and accommodate, excessive mileage without adequate tissue recovery,

From the article:
"So Napier and co-author Richard Willy from the University of Montana reviewed the highest-quality research featuring randomized controlled trials and systematic reviews.
"What we see is that there's really no high-level evidence that any running shoe design can prevent injuries," Napier said."

Now, to be honest, in our (the gait guys) opinion, there are times we do recommend a change in the foot wear for a client, and it is often because it appears to be working against someone mechanics and is a contributory factor in their injury or complaint. And sometimes that shoe recommendation is a temporary one, and sometimes a permanent one. We can use a shoe to help us get to a better/faster end point. After all, when we sprain an ankle sometime a brace or crutches are helpful and protective, of temporary value. A wisely chosen shoe can act the same if we are dealing with an acute achilles tendinopathy or a painful bunion for example. And in those cases we might recommend a shoe that can give us an assist. Sometime, when appropriate perhaps it is a shoe with a stronger medial post, perhaps one with a higher or lower heel drop/delta, or more or less stack height, or perhaps a mid/forefoot rocker built into the shoe. The truth is, people come in with functional or "fixed" pathology and sometimes pairing up a shoe to help us around some conflicting biomechanics can be temporarily, and sometimes permanently, helpful. But, the shoe is never the only answer, a wise clinician has many things they can utilize, all the way up the kinetic chain sometimes.
The more you know, the better you can assist someone.

Shawn Allen, one of the gait guys

#Nigg, #barefoot, #shoes, #stackheight, #heeldrop, #achillestendinitis, #bunion, #pronation, #supination, #running, #gait, #thegaitguys, #gaitanalysis, #gaitproblems, #gaitcompensation

Can the design of a running shoe help prevent injury? A B.C. researcher says he has the answer

Kelly Crowe · CBC News · Posted: Dec 15, 2018 9:00 AM ET

https://www.cbc.ca/news/health/running-shoe-injury-prevention-second-opinion-1.4947408?fbclid=IwAR3XaGPdgfQ68wj2N0tHqIamDdpYuxTIIL2LeudUd-doYN8YqQrIZI9-s9E

The Alex Honnold climb you haven’t heard about.

On janurary 15, 2014 Alex Honnold, Free-Soloed El Sendero Luminoso (The Shining Path) in El Potrero Chico, Mexico in a little over 3 hours. The climb rises 2500 feet to the summit of El Toro. At the time, it was considered to possibly be the most difficult rope-less climb in history, . . . until El Capitan.

An Alternate View of Crawling and Quadrupedal Motor Patterns: A Correlation to Free Solo Mountain Climbers ?

snippet from our redux blog post (link below):
"The interlimb coordination in climbing and crawling biomechanics shares similar features to other quadrupeds, both primate and non-primate, because of similarities in our central pattern generators (CPG’s). New research has however determined that the spaciotemportal patterns of spinal cord activity that helps to mediate and coordinate arm and leg function both centrally, and on a cord mediated level, significantly differ between the quadruped and bipedal gaits."

Blog link:

https://www.thegaitguys.com/thedailyblog/2019/2/10/an-alternate-view-of-crawling-and-quadrupedal-motor-patterns-a-correlation-to-free-solo-mountain-climbers-?fbclid=IwAR314kcjj6_KCnIczXksa6_5qUDQfy30NEPseH_RBmgVYEzNRSHcm8hq-IQ

What do the hip flexors have to do with the knee extensors ?


"It is not about your test, it is what your client displays in your test that matters. They will try to find a way. The load has to go somewhere, and they will find a place to put it, they always do. Finding out how your client cheats, compensates, recruits and fails is the value of the assessment."

This is just a small example of how I approach a client through small assessment window.
As best as I am able, knowing the absolute limitations of a supine examinations translation to vertical loading, I will approach a client's ability to stabilize in all 3 planes of movement. Today, i will micro-dissect a thought process.

The straight leg resistance test (SLR):
just a few incomplete thoughts on a SAGITTAL perspective (so as to avoid writing a book).
I will do it looking at **pelvis posture (anterior, posterior, oblique), lumbar spine posture (incr/decr lordosis), if they can keep their knee locked in a position, does the pelvis rotate, do they want to deviate into internal or external rotation at the hip, do they plantar or dorsiflex their ankle or toes. Lots to see here in how a client will recruit, and this is just a small snapshot of things they might do. Yes, head position, arm position were left out , again, to avoid a longer post today.
I will add consistent (as best as possible) resistance in the SLR test , with full locked knee, at hip 30, 45 and then full straight leg SLR (at the client's hamstring tension limit), then again at 45 degree knee lock with partial hip flexion, 90 degree hip and knee. I am changing loading vectors frequently to see if their is a directional loading failure. I am looking for their ability to provide ample resistance, and how they might cheat (see above).
But here is how my mind works through the test on the most basic level, which will give me insight on the above cheats** the client may employ.
* In the MOST SIMPLEST thought of the assessment, can they EFFECTIVELY stabilize the pelvis to the lumbar spine, can they stabilize the femur into the pelvis, can they stabilize the tibia onto the femur? It is how they choose to engage the system that matters, and that might be partly why their "Screen" shows up shoddy and may be a window into their pain.
The question is, if they fail, where are they failing and what tissues are overburdened or over protecting ? Where is the load, and where NOT is the load, going ?

"It is not about your test, it is what your client displays in your test that matters. They will try to find a way. The load has to go somewhere, and they will find a place to put it, they always do. Finding out how your client cheats, compensates, recruits and fails is the value of the assessment. This is how you need to be thinking when you perform many of the mostly useless orthopedic tests in the textbooks.

This is key,
a SLR screen will not show you any of this, it will just show you their range of motion, nothing more, not how they did it, what parts worked harder than other parts, and which parts are weak, injured or inhibited, for example. It is not what a client does, it is how they go about it that has the most value to you in helping them.

Today's article below is what spurred my rant today. It gives light that most already know, that everything is connected. And perhaps we can translate it into deeper thoughts for our clients, namely, what part is not doing its job, and where are they not connecting the parts, and where are they putting the loads ?

From the Ema study:
"Our findings indicate that hip flexion training results in substantial neuromuscular adaptations during knee extensions similar to those induced by knee extension training."-Ema et al.

We need a stable and strong core-spine-pelvis connection to display powerful knee extension, and, we need a stable and strong femur-pelvis connection as well. So, where is your client doing more or less of the work, and is it related to their hip, low back or knee pain? Or are they tossing it into the ankle perhaps? This is the beauty of the game we all play every day, if we are actually paying attention.

Now, remember my discussion last week about "adding strength to dysfunction" ? Where is your client going to put the load?, the answer, where they can/able. And that doesn't exactly mean where they should be putting it. Mindless prescription of corrective exercises is a real problem in my opinion.

Shawn Allen, the other gait guy.

#gait, #gaitproblems, #gaitanalysis, #correctiveexercises, #running, #hipflexors, #kneeextension, #SLR, #corestrength, #thegaitguys

Scand J Med Sci Sports. 2018 Mar;28(3):947-960. doi: 10.1111/sms.13008. Epub 2017 Nov 22.
Neuromuscular adaptations induced by adjacent joint training.
Ema R1,2, Saito I3, Akagi R1,3.